please use the equations provided to solve the following;   A bullet with mass m moving with an initial speed v is shot into a block of mass M. The bullet becomes embedded in the block, which slides a distance d across the surface until it comes to rest. What is the average force of kinetic friction between the block and the surface? -draw a diagram  - m= 5.0g   Vi= 320m/s  M =1.25kg     d=0.68 m

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question

please use the equations provided to solve the following;

 

A bullet with mass m moving with an initial speed v is shot into a block of mass M. The bullet becomes embedded in the block, which slides a distance d across the surface until it comes to rest. What is the average force of kinetic friction between the block and the surface?

-draw a diagram 

- m= 5.0g   Vi= 320m/s  M =1.25kg     d=0.68 m 

### Physics Equations and Concepts

#### Rotational Motion
- \(\theta = s/r\)
- \(\omega = v/r\)
- \(\alpha = a_t/r\)
- \(a_c = \omega^2 r\)

- \(\omega = \omega_0 + \alpha t\)
- \(\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2\)
- \(\omega^2 = \omega_0^2 + 2 \alpha (\theta - \theta_0)\)

#### Conditions of Static Equilibrium
- \(\Sigma F_x = 0\)
- \(\Sigma F_y = 0\)
- \(\Sigma T_{cw} = \Sigma T_{ccw}\)

#### Vibrational Motion
- \(T = 1/f\)
- \(x(t) = A \cos (\omega t + \phi)\)
- \(\omega = 2\pi f\)
- \(v(t) = -A\omega \sin (\omega t + \phi)\)
- \(\omega = \sqrt{k/m}\)
- \(a(t) = -A\omega^2 \cos (\omega t + \phi)\)
- \(v_{max} = A\omega\)
- \(a_{max} = A\omega^2\)
- \(F_{max} = m A \omega^2\)

#### Waves
- \(v = f \lambda\)
- \(v = \sqrt{(T/\mu)}\)
- \(\mu = \text{mass/length}\)
- \(f_n = n f_0\)
- \(l_n = 2L/n\)

#### Calorimetry
- \(q = m c \Delta T\) or \(q = \Delta H m\)

#### Ideal Gas Law
- \(PV = nRT\)
- \(R = 8.314 \, \text{L-kPa/mol-K}\)

#### Moment of Inertia
- **A ring**: \(I = MR^2\)
- **A disc**: \(I = \frac{1}{2} MR^2\)
- **A sphere**: \(I = \frac{2}{5} MR^2\)
- **A rod**: \(I = \
Transcribed Image Text:### Physics Equations and Concepts #### Rotational Motion - \(\theta = s/r\) - \(\omega = v/r\) - \(\alpha = a_t/r\) - \(a_c = \omega^2 r\) - \(\omega = \omega_0 + \alpha t\) - \(\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2\) - \(\omega^2 = \omega_0^2 + 2 \alpha (\theta - \theta_0)\) #### Conditions of Static Equilibrium - \(\Sigma F_x = 0\) - \(\Sigma F_y = 0\) - \(\Sigma T_{cw} = \Sigma T_{ccw}\) #### Vibrational Motion - \(T = 1/f\) - \(x(t) = A \cos (\omega t + \phi)\) - \(\omega = 2\pi f\) - \(v(t) = -A\omega \sin (\omega t + \phi)\) - \(\omega = \sqrt{k/m}\) - \(a(t) = -A\omega^2 \cos (\omega t + \phi)\) - \(v_{max} = A\omega\) - \(a_{max} = A\omega^2\) - \(F_{max} = m A \omega^2\) #### Waves - \(v = f \lambda\) - \(v = \sqrt{(T/\mu)}\) - \(\mu = \text{mass/length}\) - \(f_n = n f_0\) - \(l_n = 2L/n\) #### Calorimetry - \(q = m c \Delta T\) or \(q = \Delta H m\) #### Ideal Gas Law - \(PV = nRT\) - \(R = 8.314 \, \text{L-kPa/mol-K}\) #### Moment of Inertia - **A ring**: \(I = MR^2\) - **A disc**: \(I = \frac{1}{2} MR^2\) - **A sphere**: \(I = \frac{2}{5} MR^2\) - **A rod**: \(I = \
### Physics Equations and Concepts

**Angle Conversion**
- 180 degrees = π radians

**Vector Components**
- \( V_x = V \cos \theta \)
- \( V_y = V \sin \theta \)
- \( V_x^2 + V_y^2 = V^2 \)
- \( \tan \theta = V_y / V_x \)

**For Constant Acceleration Conditions**
- \( v = v_0 + at \)
- \( d = d_0 + v_0t + \frac{1}{2} at^2 \)
- \( v^2 = v_0^2 + 2a(d - d_0) \)

**Newton's Second Law of Motion**
- \( \Sigma F = ma \)

**Gravitational Force, or Weight**
- \( F_g = mg \)

**Frictional Force**
- \( F_f = \mu N \)

**Hooke's Law**
- \( F = -kx \)

**Centripetal Force**
- \( F_c = mv^2/r \)

**Conservation of Energy**
- \( \Sigma E_i + W = \Sigma E_f \)

**Work**
- \( W = F \Delta d \cos \theta \)

**Gravitational Potential Energy**
- \( U_g = mgh \)

**Spring Potential Energy**
- \( U_s = \frac{1}{2} kx^2 \)

**Kinetic Energy**
- \( KE = \frac{1}{2} mv^2 \) or \( \frac{1}{2} I \omega^2 \)

**Impulse**
- \( J = F \Delta t \)

**Momentum**
- \( p = mv \) or \( L = I\omega \)

**Momentum Conservation**
- \( \Sigma p_i + J = \Sigma p_f \)

**Torque**
- \( T = I \alpha = F r \sin \theta \)

**Moment of Inertia**
- \( I = \Sigma mr^2 \)

These equations describe fundamental principles of physics, including motion, forces, energy, and their conservation laws. Use \( g = 10 \, \text{m/s}^2 \) for gravitational acceleration in calculations.
Transcribed Image Text:### Physics Equations and Concepts **Angle Conversion** - 180 degrees = π radians **Vector Components** - \( V_x = V \cos \theta \) - \( V_y = V \sin \theta \) - \( V_x^2 + V_y^2 = V^2 \) - \( \tan \theta = V_y / V_x \) **For Constant Acceleration Conditions** - \( v = v_0 + at \) - \( d = d_0 + v_0t + \frac{1}{2} at^2 \) - \( v^2 = v_0^2 + 2a(d - d_0) \) **Newton's Second Law of Motion** - \( \Sigma F = ma \) **Gravitational Force, or Weight** - \( F_g = mg \) **Frictional Force** - \( F_f = \mu N \) **Hooke's Law** - \( F = -kx \) **Centripetal Force** - \( F_c = mv^2/r \) **Conservation of Energy** - \( \Sigma E_i + W = \Sigma E_f \) **Work** - \( W = F \Delta d \cos \theta \) **Gravitational Potential Energy** - \( U_g = mgh \) **Spring Potential Energy** - \( U_s = \frac{1}{2} kx^2 \) **Kinetic Energy** - \( KE = \frac{1}{2} mv^2 \) or \( \frac{1}{2} I \omega^2 \) **Impulse** - \( J = F \Delta t \) **Momentum** - \( p = mv \) or \( L = I\omega \) **Momentum Conservation** - \( \Sigma p_i + J = \Sigma p_f \) **Torque** - \( T = I \alpha = F r \sin \theta \) **Moment of Inertia** - \( I = \Sigma mr^2 \) These equations describe fundamental principles of physics, including motion, forces, energy, and their conservation laws. Use \( g = 10 \, \text{m/s}^2 \) for gravitational acceleration in calculations.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Collisions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON