a) What will her velocity be after she has finished pushing against the rescue pod? (b) How long before the rescue ship is due to arrive a point P should the space voyager begin her push?
A 70 kg space voyager is stranded on a 700 kg escape pod that has left the main spacecraft and is floating in free space (you may assume its velocity is 0 m/s). A rescue ship is approaching and will pass within 100 m of the escape pod. The space voyager plans to push herself away from the escape pod towards the point by which the rescue ship will pass (point P in the diagram). The space voyager knows that she can apply a constant force of 100 N while she pushes for the 0.50 s it takes her to straighten her arms.
(a) What will her velocity be after she has finished pushing against the rescue pod?
(b) How long before the rescue ship is due to arrive a point P should the space voyager begin her push?
![Path of rescue ship
100 m
Person modelled
as point particle
Escape pod](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4eacb38d-0df4-4d82-94b7-88634a2db476%2Fb4a195e1-fe3d-4508-956c-3c9e50914a9a%2Fqta2m1e_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 10 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)