Please show system sketches and related energy flows for all problems. 1.1 Determine the electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). There is a 1.5(105 ) W rate of heat loss from the boiler during this process to a surrounding at 293.2 k. Consider steady state conditions. 1.4 Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of problem 1.1 if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg. 1.5 Calculate the exergy destroyed in the process described by problem 1.4. The exergy of the fuel entering this process is 51.82 MJ/Kg. The dead state temperature is 293.2 K and pressure is 1 bar. The products of combustion leave this process at the dead state.
Please show system sketches and related energy flows for all problems.
1.1 Determine the electrical power supplied to a boiler when the temperature of the entering water is 20 C and the exiting temperature is 89 C. The flow of the pressured water is 2 Kg/s. There is a negligible pressure drop through this boiler and it operates at a constant pressure of 3 bars. The specific heat is c = 4,370 J/(Kg K). There is a 1.5(105 ) W rate of heat loss from the boiler during this process to a surrounding at 293.2 k. Consider steady state conditions.
1.4 Calculate the mass flowrate of fuel (natural gas, CH4) required to heat the water flow to the conditions of problem 1.1 if the electrical heating device is replaced with a gas fired boiler. The high heating value (HHV) of the fuel is 50.02 MJ/kg.
1.5 Calculate the exergy destroyed in the process described by problem 1.4. The exergy of the fuel entering this process is 51.82 MJ/Kg. The dead state temperature is 293.2 K and pressure is 1 bar. The products of combustion leave this process at the dead state.
Step by step
Solved in 5 steps with 4 images