Please answer the following question in detail and explain all the proofs and assumptions for all parts. The question has three parts, (a), (b) and (c).   Iterative lengthening search is an iterative analogue of uniform-cost search. The basic idea is to use increasing limits on path cost. If a node is generated whose path cost exceeds the current limit, it is immediately discarded. For each new iteration, the limit is set to the lowest path cost of any node discarded in the previous iteration. (a) Show that this algorithm is optimal for general path costs. You may assume that all costs are integers (this is not a loss of generality if the search space is finite). You may wish to consider the minimal path cost C; what happens when we set the path cost to be some limit l < C? (b) Consider a uniform tree with branching factor b, solution depth d, and unit step costs (each action costs one unit). How many iterations will iterative lengthening require? (c) (7 points) Now consider the case where each step cost is a randomly chosen real number from the interval [ε, 1] for some 0 < ε < 1. Howmanyiterations are required in the worst case? Try to derive the best estimate you can.

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Please answer the following question in detail and explain all the proofs and assumptions for all parts. The question has three parts, (a), (b) and (c).

 

Iterative lengthening search is an iterative analogue of uniform-cost search. The basic idea is to use increasing limits on path cost. If a node is generated whose path cost exceeds the current limit, it is immediately discarded. For each new iteration, the limit is set to the lowest path cost of any node discarded in the previous iteration. (a) Show that this algorithm is optimal for general path costs. You may assume that all costs are integers (this is not a loss of generality if the search space is finite). You may wish to consider the minimal path cost C; what happens when we set the path cost to be some limit l < C? (b) Consider a uniform tree with branching factor b, solution depth d, and unit step costs (each action costs one unit). How many iterations will iterative lengthening require? (c) (7 points) Now consider the case where each step cost is a randomly chosen real number from the interval [ε, 1] for some 0 < ε < 1. Howmanyiterations are required in the worst case? Try to derive the best estimate you can.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Single source shortest path
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education