Please answer part B: Lucky Lumen light bulbs have an expected life that is exponentially distributed with a mean of 24,000 hours. Determine the probability that one of these light bulbs will last
Please answer part B:
Lucky Lumen light bulbs have an expected life that is exponentially distributed with a mean of 24,000 hours. Determine the probability that one of these light bulbs will last
T / MTBF | e-T / MTBF | T / MTBF | e-T / MTBF | T / MTBF | e-T / MTBF | ||||||
0.10 | 0.9048 | 2.60 | 0.0743 | 5.10 | 0.0061 | ||||||
0.20 | 0.8187 | 2.70 | 0.0672 | 5.20 | 0.0055 | ||||||
0.30 | 0.7408 | 2.80 | 0.0608 | 5.30 | 0.0050 | ||||||
0.40 | 0.6703 | 2.90 | 0.0550 | 5.40 | 0.0045 | ||||||
0.50 | 0.6065 | 3.00 | 0.0498 | 5.50 | 0.0041 | ||||||
0.60 | 0.5488 | 3.10 | 0.0450 | 5.60 | 0.0037 | ||||||
0.70 | 0.4966 | 3.20 | 0.0408 | 5.70 | 0.0033 | ||||||
0.80 | 0.4493 | 3.30 | 0.0369 | 5.80 | 0.0030 | ||||||
0.90 | 0.4066 | 3.40 | 0.0334 | 5.90 | 0.0027 | ||||||
1.00 | 0.3679 | 3.50 | 0.0302 | 6.00 | 0.0025 | ||||||
1.10 | 0.3329 | 3.60 | 0.0273 | 6.10 | 0.0022 | ||||||
1.20 | 0.3012 | 3.70 | 0.0247 | 6.20 | 0.0020 | ||||||
1.30 | 0.2725 | 3.80 | 0.0224 | 6.30 | 0.0018 | ||||||
1.40 | 0.2466 | 3.90 | 0.0202 | 6.40 | 0.0017 | ||||||
1.50 | 0.2231 | 4.00 | 0.0183 | 6.50 | 0.0015 | ||||||
1.60 | 0.2019 | 4.10 | 0.0166 | 6.60 | 0.0014 | ||||||
1.70 | 0.1827 | 4.20 | 0.0150 | 6.70 | 0.0012 | ||||||
1.80 | 0.1653 | 4.30 | 0.0136 | 6.80 | 0.0011 | ||||||
1.90 | 0.1496 | 4.40 | 0.0123 | 6.90 | 0.0010 | ||||||
2.00 | 0.1353 | 4.50 | 0.0111 | 7.00 | 0.0009 | ||||||
2.10 | 0.1255 | 4.60 | 0.0101 | ||||||||
2.20 | 0.1108 | 4.70 | 0.0091 | ||||||||
2.30 | 0.1003 | 4.80 | 0.0082 | ||||||||
2.40 | 0.0907 | 4.90 | 0.0074 | ||||||||
2.50 | 0.0821 | 5.00 | 0.0067 | ||||||||
a. At least 29,000 hours. (Round your intermediate calculations to 4 decimal place and round your final answer to 4 decimal places.)
e-T/MTBF
b. No longer than 7,000 hours. (Round your intermediate calculations to 4 decimal place and round your final answer to 4 decimal places.)
1−e-T/MTBF
c. Between 7,000 hours and 29,000 hours. (Round your intermediate calculations to 4 decimal place and round your final answer to 4 decimal places.)
P
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images