*PLEASE ANSWER #2 and #3* Sketch a graph of how you would expect an instantaneous acceleration vs. time graph to look for a cart released from rest on an inclined track. Next to this graph, sketch a new graph of the acceleration vs. time for a cart with a much larger mass. Explain your reasoning. Write down the equation(s) that best represent each of these graphs. If there are constants in your equation, what kinematic quantities do they represent? How would you determine these constants from your graph? Sketch a graph of instantaneous velocity vs. time for each case. Use the same scale for the time axes as the acceleration graphs. Write down the equation(s) for each graph. If there are constants in your equations, what kinematic quantities do they represent? How would you determine these constants from your graph? Now do the same for position vs. time. Can any of the constants in your functions be determined from the equations representing the acceleration vs. time or velocity vs. time graphs?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
*PLEASE ANSWER #2 and #3*
- Sketch a graph of how you would expect an instantaneous acceleration vs. time graph to look for a cart released from rest on an inclined track. Next to this graph, sketch a new graph of the acceleration vs. time for a cart with a much larger mass. Explain your reasoning. Write down the equation(s) that best represent each of these graphs. If there are constants in your equation, what
kinematic quantities do they represent? How would you determine these constants from your graph? - Sketch a graph of instantaneous velocity vs. time for each case. Use the same scale for the time axes as the acceleration graphs. Write down the equation(s) for each graph. If there are constants in your equations, what kinematic quantities do they represent? How would you determine these constants from your graph?
- Now do the same for position vs. time. Can any of the constants in your functions be determined from the equations representing the acceleration vs. time or velocity vs. time graphs?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 3 images