P(KPA) Consider the following cyclic process. Heat is al- lowed to flow out of a 0.7 mol of ideal diatomic gas at constant volume so that its pressure drops from 333 kPa to 140 kPa. Then the gas expands at con- stant pressure, from a volume of 5.9 x 10-3 m to 9.3x 10-3 m, where the temperature reaches its orig- inal value. Then the gas is compressed isothermally to its original pressure and volume. Calculate the efficiency of this process. 333 140 V(x10-)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Consider the following cyclic process. Heat is al-
lowed to flow out of a 0.7 mol of ideal diatomic gas
at constant volume so that its pressure drops from
333 kPa to 140kPa. Then the gas expands at con-
stant pressure, from a volume of 5.9 x 10-3 m to
9.3x 10-3 m, where the temperature reaches its orig-
inal value. Then the gas is compressed isothermally
to its original pressure and volume. Calculate the
efficiency of this process.
333
140
V(x10-m)
50
Transcribed Image Text:Consider the following cyclic process. Heat is al- lowed to flow out of a 0.7 mol of ideal diatomic gas at constant volume so that its pressure drops from 333 kPa to 140kPa. Then the gas expands at con- stant pressure, from a volume of 5.9 x 10-3 m to 9.3x 10-3 m, where the temperature reaches its orig- inal value. Then the gas is compressed isothermally to its original pressure and volume. Calculate the efficiency of this process. 333 140 V(x10-m) 50
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Properties of Pure Substances
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY