Pind yl with im Picit differentir tion Cosと+ Sinxニ)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Title: Implicit Differentiation to Find the Second Derivative**

**Problem:**
Find \( y'' \) using implicit differentiation for the equation:

\[
\cos y + \sin x = 1
\]

**Solution Steps:**

1. **Differentiate the Equation:**

   Start by applying implicit differentiation to both sides of the equation with respect to \( x \):

   \[
   \frac{d}{dx}(\cos y) + \frac{d}{dx}(\sin x) = \frac{d}{dx}(1)
   \]

2. **Applying Derivatives:**

   \[
   -\sin y \cdot \frac{dy}{dx} + \cos x = 0
   \]

3. **Solve for the First Derivative \( y' \):**

   Re-arrange to solve for \( \frac{dy}{dx} \) (denote \( y' \) as \( \frac{dy}{dx} \)):

   \[
   y' = \frac{\cos x}{\sin y}
   \]

4. **Find the Second Derivative \( y'' \):**

   Differentiate \( y' = \frac{\cos x}{\sin y} \) with respect to \( x \):

   \[
   y'' = \frac{d}{dx} \left( \frac{\cos x}{\sin y} \right)
   \]

5. **Use the Quotient Rule:**

   The quotient rule is:
   \[
   \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}
   \]

   Here, \( u = \cos x \) and \( v = \sin y \).

   \[
   \frac{du}{dx} = -\sin x, \quad \frac{dv}{dx} = \cos y \cdot y'
   \]

   Substituting into the quotient rule:

   \[
   y'' = \frac{\sin y (-\sin x) - \cos x (\cos y \cdot y')}{(\sin y)^2}
   \]

6. **Substitute \( y' = \frac{\cos x}{\sin y} \):**
Transcribed Image Text:**Title: Implicit Differentiation to Find the Second Derivative** **Problem:** Find \( y'' \) using implicit differentiation for the equation: \[ \cos y + \sin x = 1 \] **Solution Steps:** 1. **Differentiate the Equation:** Start by applying implicit differentiation to both sides of the equation with respect to \( x \): \[ \frac{d}{dx}(\cos y) + \frac{d}{dx}(\sin x) = \frac{d}{dx}(1) \] 2. **Applying Derivatives:** \[ -\sin y \cdot \frac{dy}{dx} + \cos x = 0 \] 3. **Solve for the First Derivative \( y' \):** Re-arrange to solve for \( \frac{dy}{dx} \) (denote \( y' \) as \( \frac{dy}{dx} \)): \[ y' = \frac{\cos x}{\sin y} \] 4. **Find the Second Derivative \( y'' \):** Differentiate \( y' = \frac{\cos x}{\sin y} \) with respect to \( x \): \[ y'' = \frac{d}{dx} \left( \frac{\cos x}{\sin y} \right) \] 5. **Use the Quotient Rule:** The quotient rule is: \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \( u = \cos x \) and \( v = \sin y \). \[ \frac{du}{dx} = -\sin x, \quad \frac{dv}{dx} = \cos y \cdot y' \] Substituting into the quotient rule: \[ y'' = \frac{\sin y (-\sin x) - \cos x (\cos y \cdot y')}{(\sin y)^2} \] 6. **Substitute \( y' = \frac{\cos x}{\sin y} \):**
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 21 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning