Perform the indicated elementary row operations in the stated order. 475 (1) R,+→R2 (ii) – 4R, + R2→R2 (iii) – R2 1 2 6 (i) 4 7 5 R,+R 1 26 (ii) 475 R,+R, -4R, +R,→R, 1 2 6 (iii) 475 R,+R -4R, +R,→R, -R2 1 26

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Elementary Row Operations on a Matrix**

Perform the indicated elementary row operations in the stated order for the given matrix:

\[
\begin{bmatrix}
4 & 7 & 5 \\
1 & 2 & 6 
\end{bmatrix}
\]

### Operations:

1. **Swap Rows**: \( R_1 \leftrightarrow R_2 \)
2. **Row Transformation**: \( -4R_1 + R_2 \rightarrow R_2 \)
3. **Row Negation**: \( -R_2 \)

### Detailed Steps:

- **Step (i): Row Swap \( R_1 \leftrightarrow R_2 \)**

  Initial Matrix:
  \[
  \begin{bmatrix}
  4 & 7 & 5 \\
  1 & 2 & 6 
  \end{bmatrix}
  \]

  Swap rows to get:
  \[
  \begin{bmatrix}
  1 & 2 & 6 \\
  4 & 7 & 5 
  \end{bmatrix}
  \]

- **Step (ii): Row Transformation \( -4R_1 + R_2 \rightarrow R_2 \)**

  Using the swapped matrix:
  \[
  \begin{bmatrix}
  1 & 2 & 6 \\
  4 & 7 & 5 
  \end{bmatrix}
  \]

  Apply the transformation to \( R_2 \):
  \[
  \begin{bmatrix}
  1 & 2 & 6 \\
  -4(1) + 4 & -4(2) + 7 & -4(6) + 5 
  \end{bmatrix}
  \]

  Result:
  \[
  \begin{bmatrix}
  1 & 2 & 6 \\
  0 & -1 & -19 
  \end{bmatrix}
  \]

- **Step (iii): Negate Row \( -R_2 \)**

  Using the previous result:
  \[
  \begin{bmatrix}
  1 & 2 & 6 \\
  0 & -1 & -19 
  \end{bmatrix}
  \]

  Negate \( R_2 \):
  \
Transcribed Image Text:**Elementary Row Operations on a Matrix** Perform the indicated elementary row operations in the stated order for the given matrix: \[ \begin{bmatrix} 4 & 7 & 5 \\ 1 & 2 & 6 \end{bmatrix} \] ### Operations: 1. **Swap Rows**: \( R_1 \leftrightarrow R_2 \) 2. **Row Transformation**: \( -4R_1 + R_2 \rightarrow R_2 \) 3. **Row Negation**: \( -R_2 \) ### Detailed Steps: - **Step (i): Row Swap \( R_1 \leftrightarrow R_2 \)** Initial Matrix: \[ \begin{bmatrix} 4 & 7 & 5 \\ 1 & 2 & 6 \end{bmatrix} \] Swap rows to get: \[ \begin{bmatrix} 1 & 2 & 6 \\ 4 & 7 & 5 \end{bmatrix} \] - **Step (ii): Row Transformation \( -4R_1 + R_2 \rightarrow R_2 \)** Using the swapped matrix: \[ \begin{bmatrix} 1 & 2 & 6 \\ 4 & 7 & 5 \end{bmatrix} \] Apply the transformation to \( R_2 \): \[ \begin{bmatrix} 1 & 2 & 6 \\ -4(1) + 4 & -4(2) + 7 & -4(6) + 5 \end{bmatrix} \] Result: \[ \begin{bmatrix} 1 & 2 & 6 \\ 0 & -1 & -19 \end{bmatrix} \] - **Step (iii): Negate Row \( -R_2 \)** Using the previous result: \[ \begin{bmatrix} 1 & 2 & 6 \\ 0 & -1 & -19 \end{bmatrix} \] Negate \( R_2 \): \
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Matrix Factorization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning