Part b: Continue to assume that the height of your cylinder is 8 inches. Write the radius r as a function of A. This is the inverse function to A (r), i.e to turn A as a function of r into. r as a function of A. ab sin (a) 00 a r(A) = %3D Hints: • To calculate an inverse function, you need to solve for r. Here you would start with A = 2 ar2 + 16 ar. This equation is the same as 2 r2 + 16 ar – A = 0 which is a quadratic equation in the variable r, and you can solve that using the quadratic formula. 3 n+1 z+1 more information in the Introduction to Mobius unit. • If you want to type in in Mobius, in text mode you can type in (3*pi+1)(x+1). There is Part c: If the surface area is 275 square inches, then what is the rardius r? In other words, evaluate r (275). Round your answer to 2 decimal places. Hint: To compute a numeric square root such as V17.3, you could • Use a spreadsheet such as Microsoft Excel or OpenOffice Calc and type in =sqrt(17.3) • Use a browser to connect to the Internet and type in sqrt(17.3) into a search field • Use a calculator The radius is 3.73 inches if the surface area is 275 square inches.
Part b: Continue to assume that the height of your cylinder is 8 inches. Write the radius r as a function of A. This is the inverse function to A (r), i.e to turn A as a function of r into. r as a function of A. ab sin (a) 00 a r(A) = %3D Hints: • To calculate an inverse function, you need to solve for r. Here you would start with A = 2 ar2 + 16 ar. This equation is the same as 2 r2 + 16 ar – A = 0 which is a quadratic equation in the variable r, and you can solve that using the quadratic formula. 3 n+1 z+1 more information in the Introduction to Mobius unit. • If you want to type in in Mobius, in text mode you can type in (3*pi+1)(x+1). There is Part c: If the surface area is 275 square inches, then what is the rardius r? In other words, evaluate r (275). Round your answer to 2 decimal places. Hint: To compute a numeric square root such as V17.3, you could • Use a spreadsheet such as Microsoft Excel or OpenOffice Calc and type in =sqrt(17.3) • Use a browser to connect to the Internet and type in sqrt(17.3) into a search field • Use a calculator The radius is 3.73 inches if the surface area is 275 square inches.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
If I could get the answers and explanation typed out instead of it written on paper, that would be great, since I can't read hand writing most the time to the fullest. Also need the explanation for why part C is 3.73 inches
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 16 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,