Part 1 of 3 The circular velocity equation can be used to determine the orbital velocity of a ring particle. GM Calculate the orbital velocity of a ring particle that orbits 1.25 x 10° km from the center of Jupiter. GM %3D km/s
Part 1 of 3 The circular velocity equation can be used to determine the orbital velocity of a ring particle. GM Calculate the orbital velocity of a ring particle that orbits 1.25 x 10° km from the center of Jupiter. GM %3D km/s
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
100%
![**Educational Content:**
**Calculate the Orbital Velocity**
Calculate the orbital velocity (in km/s) of a ring particle that orbits \( 1.25 \times 10^5 \) km from the center of Jupiter.
**Roche Limit for Jupiter**
What is the Roche limit (in km) for Jupiter?
**Find the Closest Moon**
Find the moon in the table below that is closest to this radius. What is its orbital velocity (in km/s)?
---
**Selection of Principal Satellites of the Solar System**
| Primary | Satellite | Radius (km) | Distance from Primary (10^3 km) |
|---------|-------------|---------------|---------------------------------|
| **Jupiter** | Amalthea | 135 × 100 × 78 | 182 |
| | Io | 1,820 | 422 |
| | Europa | 1,560 | 671 |
| | Ganymede | 2,630 | 1,071 |
| | Callisto | 2,410 | 1,884 |
| | Himalia | ~85 | 11,470 |
| **Saturn** | Janus | 110 × 80 × 100| 151.5 |
| | Mimas | 196 | 185.5 |
| | Enceladus | 260 | 238.0 |
| | Tethys | 530 | 294.7 |
| | Dione | 560 | 377 |
| | Rhea | 765 | 527 |
| | Titan | 2,575 | 1,222 |
| | Hyperion | 205 × 130 × 110| 1,484 |
| | Iapetus | 720 | 3,562 |
| | Phoebe | 105 | 12,930 |
---
The table lists some principal satellites of Jupiter and Saturn, providing details such as their radius and distance from their primary planet.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fce65b68c-f7fa-43cb-8208-fb11f3ef12a3%2F27995a71-3e13-43f0-8e59-7d0e80820ccc%2F1m7fmrb_processed.png&w=3840&q=75)
Transcribed Image Text:**Educational Content:**
**Calculate the Orbital Velocity**
Calculate the orbital velocity (in km/s) of a ring particle that orbits \( 1.25 \times 10^5 \) km from the center of Jupiter.
**Roche Limit for Jupiter**
What is the Roche limit (in km) for Jupiter?
**Find the Closest Moon**
Find the moon in the table below that is closest to this radius. What is its orbital velocity (in km/s)?
---
**Selection of Principal Satellites of the Solar System**
| Primary | Satellite | Radius (km) | Distance from Primary (10^3 km) |
|---------|-------------|---------------|---------------------------------|
| **Jupiter** | Amalthea | 135 × 100 × 78 | 182 |
| | Io | 1,820 | 422 |
| | Europa | 1,560 | 671 |
| | Ganymede | 2,630 | 1,071 |
| | Callisto | 2,410 | 1,884 |
| | Himalia | ~85 | 11,470 |
| **Saturn** | Janus | 110 × 80 × 100| 151.5 |
| | Mimas | 196 | 185.5 |
| | Enceladus | 260 | 238.0 |
| | Tethys | 530 | 294.7 |
| | Dione | 560 | 377 |
| | Rhea | 765 | 527 |
| | Titan | 2,575 | 1,222 |
| | Hyperion | 205 × 130 × 110| 1,484 |
| | Iapetus | 720 | 3,562 |
| | Phoebe | 105 | 12,930 |
---
The table lists some principal satellites of Jupiter and Saturn, providing details such as their radius and distance from their primary planet.
![**Part 1 of 3**
The circular velocity equation can be used to determine the orbital velocity of a ring particle.
\[ v = \sqrt{\frac{GM}{r}} \]
Calculate the orbital velocity of a ring particle that orbits \( 1.25 \times 10^5 \) km from the center of Jupiter.
\[ v = \sqrt{\frac{GM}{\_\_\_\_\_\_\_}} \, \text{m} \]
\[ v = \_\_\_\_\_\_\_ \, \text{km/s} \]
*Explanation:*
- The formula \( v = \sqrt{\frac{GM}{r}} \) calculates the orbital velocity (`v`) based on the gravitational constant (`G`), the mass of the central object (`M`), and the radius of the orbit (`r`).
- The problem requires determining the orbital speed for a ring particle at a radius of \( 1.25 \times 10^5 \) km from Jupiter.
- The given details are used to fill in the blanks in the calculation, using the values of `G` and `M` for Jupiter.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fce65b68c-f7fa-43cb-8208-fb11f3ef12a3%2F27995a71-3e13-43f0-8e59-7d0e80820ccc%2Fzi4ains_processed.png&w=3840&q=75)
Transcribed Image Text:**Part 1 of 3**
The circular velocity equation can be used to determine the orbital velocity of a ring particle.
\[ v = \sqrt{\frac{GM}{r}} \]
Calculate the orbital velocity of a ring particle that orbits \( 1.25 \times 10^5 \) km from the center of Jupiter.
\[ v = \sqrt{\frac{GM}{\_\_\_\_\_\_\_}} \, \text{m} \]
\[ v = \_\_\_\_\_\_\_ \, \text{km/s} \]
*Explanation:*
- The formula \( v = \sqrt{\frac{GM}{r}} \) calculates the orbital velocity (`v`) based on the gravitational constant (`G`), the mass of the central object (`M`), and the radius of the orbit (`r`).
- The problem requires determining the orbital speed for a ring particle at a radius of \( 1.25 \times 10^5 \) km from Jupiter.
- The given details are used to fill in the blanks in the calculation, using the values of `G` and `M` for Jupiter.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON