A number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”. The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days? Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law.
A number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”. The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days? Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law.
Related questions
Question
Problem 1. “Hot Jupiter” Exoplanets
A number of gas giant planets orbiting other stars at distances less than 1 A.U. have been discovered. Because of their proximity to their parent stars, and their compositional similarity to Jupiter, they have been labeled “Hot Jupiters”.
- The orbital radius of one of these planets is 0.06 A.U. with average orbital speed 600 km/sec. What is the length of this planet’s year in Earth (solar) days?
- Estimate the mass, M, of its parent star in terms of the mass of the sun (M) using Newton’s first form of Kepler’s 3rd Law.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps