P8.20. (a) Compute the vertical deflection and slope of the cantilever beam at points B and C in Figure P8.20. Given: El is constant throughout, and E = 4000 kips/in.². What is the minimum required value of I if the deflection of point C is not to exceed 0.4 in.?

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
**P8.20.** (a) Compute the vertical deflection and slope of the cantilever beam at points B and C in Figure P8.20. Given: \(EI\) is constant throughout, and \(E = 4000 \text{ kips/in}^2\). What is the minimum required value of \(I\) if the deflection of point C is not to exceed 0.4 in?
Transcribed Image Text:**P8.20.** (a) Compute the vertical deflection and slope of the cantilever beam at points B and C in Figure P8.20. Given: \(EI\) is constant throughout, and \(E = 4000 \text{ kips/in}^2\). What is the minimum required value of \(I\) if the deflection of point C is not to exceed 0.4 in?
The diagram illustrates a simply supported beam with three distinct sections marked as \( A \), \( B \), and \( C \). The beam is subjected to various loads:

1. **Distributed Load:** 
   - A uniform distributed load of \( w = 1 \text{ kip/ft} \) extends from point \( A \) to point \( B \), covering a span of 6 feet.

2. **Point Load:**
   - At point \( C \), there is a concentrated point load of \( P = 6 \text{ kips} \).

3. **Moment:**
   - Also at point \( C \), there is an applied moment of \( 10 \text{ kip} \cdot \text{ft} \).

- **Span Lengths:**
   - The total span of the beam is 12 feet, with each section \( AB \) and \( BC \) being 6 feet long.

These loading scenarios are common in structural analysis and are crucial for understanding how different loads affect beams. The distributed load causes bending along the length of the beam, while the point load and moment at \( C \) create additional stress concentrations that must be accounted for in design.
Transcribed Image Text:The diagram illustrates a simply supported beam with three distinct sections marked as \( A \), \( B \), and \( C \). The beam is subjected to various loads: 1. **Distributed Load:** - A uniform distributed load of \( w = 1 \text{ kip/ft} \) extends from point \( A \) to point \( B \), covering a span of 6 feet. 2. **Point Load:** - At point \( C \), there is a concentrated point load of \( P = 6 \text{ kips} \). 3. **Moment:** - Also at point \( C \), there is an applied moment of \( 10 \text{ kip} \cdot \text{ft} \). - **Span Lengths:** - The total span of the beam is 12 feet, with each section \( AB \) and \( BC \) being 6 feet long. These loading scenarios are common in structural analysis and are crucial for understanding how different loads affect beams. The distributed load causes bending along the length of the beam, while the point load and moment at \( C \) create additional stress concentrations that must be accounted for in design.
Expert Solution
steps

Step by step

Solved in 8 steps with 8 images

Blurred answer
Knowledge Booster
Beams
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning