P5C.4" 1-Butanol and chlorobenzene form a minimum boiling azeotropic system. The mole fraction of 1-butanol in the liquid (x) and vapour (y) phases at 1.000 atm is given below for a variety of boiling temperatures (H. Artigas et al., J. Chem. Eng. Data 42, 132 (1997)). T/K 396.57 393.94 391.60 390.15 389.03 388.66 388.57 0.1065 0.1700 0.2646 0.3687 0.5017 0.6091 0.7171 y 0.2859 0.3691 0.4505 0.5138 0.5840 0.6409 0.7070 Pure chlorobenzene boils at 404.86 K. (a) Construct the chlorobenzene-rich portion of the phase diagram from the data. (b) Estimate the temperature at which a solution whose mole fraction of 1-butanol is 0.300 begins to boil. (c) State the compositions and relative proportions of the two phases present after a solution initially 0.300 1-butanol is heated to 393.94 K.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
P5C.4* 1-Butanol and chlorobenzene form a minimum boiling azeotropic
system. The mole fraction of 1-butanol in the liquid (x) and vapour (y) phases
at 1.000 atm is given below for a variety of boiling temperatures (H. Artigas
et al., J. Chem. Eng. Data 42, 132 (1997)).
TIК 396.57
393.94 391.60
390.15
389.03 388.66
388.57
0.1065
0.1700
0.2646
0.3687
0.5017 0.6091
0.7171
y
0.2859
0.3691
0.4505
0.5138 0.5840 0.6409
0.7070
Pure chlorobenzene boils at 404.86 K. (a) Construct the chlorobenzene-rich
portion of the phase diagram from the data. (b) Estimate the temperature
at which a solution whose mole fraction of 1-butanol is 0.300 begins to boil.
(c) State the compositions and relative proportions of the two phases present
after a solution initially 0.300 1-butanol is heated to 393.94 K.
Transcribed Image Text:P5C.4* 1-Butanol and chlorobenzene form a minimum boiling azeotropic system. The mole fraction of 1-butanol in the liquid (x) and vapour (y) phases at 1.000 atm is given below for a variety of boiling temperatures (H. Artigas et al., J. Chem. Eng. Data 42, 132 (1997)). TIК 396.57 393.94 391.60 390.15 389.03 388.66 388.57 0.1065 0.1700 0.2646 0.3687 0.5017 0.6091 0.7171 y 0.2859 0.3691 0.4505 0.5138 0.5840 0.6409 0.7070 Pure chlorobenzene boils at 404.86 K. (a) Construct the chlorobenzene-rich portion of the phase diagram from the data. (b) Estimate the temperature at which a solution whose mole fraction of 1-butanol is 0.300 begins to boil. (c) State the compositions and relative proportions of the two phases present after a solution initially 0.300 1-butanol is heated to 393.94 K.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 6 images

Blurred answer
Knowledge Booster
Thermodynamic Description of Mixtures
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY