ou are on a development team investigating a new design for computer magnetic disk drives. You have been asked to determine if the standard disk drive motor will be sufficient for the test version of the new disk. To do this you decide to calculate how much energy is needed to get the 6.4 cm diameter, 15 gram disk to its operating speed of 350 revolutions per second. The test disk also has 4 different sensors attached to its surface. These small sensors are arranged at the corners of a square with sides of 1.2 cm. To assure stability, the center of mass of the sensor array is in the same position as the center of mass of the disk. The disk’s axis of rotation also goes through the center of mass. You know that the sensors have masses of 1.0 grams, 1.5 grams, 2.0 grams, and 3.0 grams. The moment of inertia of your disk is one-half that of a ring.
You are on a development team investigating a new design for computer magnetic disk drives. You have been asked to determine if the standard disk drive motor will be sufficient for the test version of the new disk. To do this you decide to calculate how much energy is needed to get the 6.4 cm diameter, 15 gram disk to its operating speed of 350 revolutions per second. The test disk also has 4 different sensors attached to its surface. These small sensors are arranged at the corners of a square with sides of 1.2 cm. To assure stability, the center of mass of the sensor array is in the same position as the center of mass of the disk. The disk’s axis of rotation also goes through the center of mass. You know that the sensors have masses of 1.0 grams, 1.5 grams, 2.0 grams, and 3.0 grams. The moment of inertia of your disk is one-half that of a ring.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images