Ose the definition to find the Laplace Transform of the given function [t, 0St<1 f(t)=} |1, t21

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question

How can i solve this exercise?

### Example Problem: Laplace Transform Using Definition

**Problem Statement:**

Use the definition to find the Laplace Transform of the given function

\[f(t) = 
    \begin{cases} 
      t, & 0 \le t < 1 \\
      1, & t \ge 1 
    \end{cases}
\]

**Solution Outline:**

To solve this problem, you will: 
1. Apply the definition of the Laplace Transform.
2. Integrate the function piecewise according to its definition over the different intervals.

**Step-by-Step Solution:**

1. **Definition of Laplace Transform:**

   The Laplace Transform of a function \( f(t) \), denoted as \( \mathcal{L}\{f(t)\} \) or \( F(s) \), is given by:
   
   \[
   \mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) \, dt
   \]

2. **Piecewise Integration:**

   For the given function \( f(t) \), we break the integral into two parts corresponding to the intervals of the piecewise function.

   \[
   \mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) \, dt = \int_{0}^{1} e^{-st} t \, dt + \int_{1}^{\infty} e^{-st} \cdot 1 \, dt
   \]

3. **Evaluate Each Integral:**

   - **First Integral:**
     \[
     \int_{0}^{1} e^{-st} t \, dt 
     \]

     Use integration by parts:
     Let \( u = t \) and \( dv = e^{-st} dt \).
     Then, \( du = dt \) and \( v = -\frac{1}{s} e^{-st} \).

     Thus,
     \[
     \int_{0}^{1} t e^{-st} \, dt = \left. -\frac{t}{s} e^{-st} \right|_{0}^{1} + \int_{0}^{1} \frac{1}{s} e^{-st} \, dt
     \]
     \[
     = \left( -
Transcribed Image Text:### Example Problem: Laplace Transform Using Definition **Problem Statement:** Use the definition to find the Laplace Transform of the given function \[f(t) = \begin{cases} t, & 0 \le t < 1 \\ 1, & t \ge 1 \end{cases} \] **Solution Outline:** To solve this problem, you will: 1. Apply the definition of the Laplace Transform. 2. Integrate the function piecewise according to its definition over the different intervals. **Step-by-Step Solution:** 1. **Definition of Laplace Transform:** The Laplace Transform of a function \( f(t) \), denoted as \( \mathcal{L}\{f(t)\} \) or \( F(s) \), is given by: \[ \mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) \, dt \] 2. **Piecewise Integration:** For the given function \( f(t) \), we break the integral into two parts corresponding to the intervals of the piecewise function. \[ \mathcal{L}\{f(t)\} = \int_{0}^{\infty} e^{-st} f(t) \, dt = \int_{0}^{1} e^{-st} t \, dt + \int_{1}^{\infty} e^{-st} \cdot 1 \, dt \] 3. **Evaluate Each Integral:** - **First Integral:** \[ \int_{0}^{1} e^{-st} t \, dt \] Use integration by parts: Let \( u = t \) and \( dv = e^{-st} dt \). Then, \( du = dt \) and \( v = -\frac{1}{s} e^{-st} \). Thus, \[ \int_{0}^{1} t e^{-st} \, dt = \left. -\frac{t}{s} e^{-st} \right|_{0}^{1} + \int_{0}^{1} \frac{1}{s} e^{-st} \, dt \] \[ = \left( -
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Data Collection, Sampling Methods, and Bias
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning