One string of a certain musical instrument is 74.0 cm long and has a mass of 8.76 g. It is being played in a room where the speed of sound is 344 m/s. To what tension must you adjust the string so that, when vibrating in its second overtone, it produces sound of wavelength 0.760 m ? (Assume that the breaking stress of the wire is very large and isn’t exceeded.) What frequency sound does this string produce in its fundamental mode of vibration?
Properties of sound
A sound wave is a mechanical wave (or mechanical vibration) that transit through media such as gas (air), liquid (water), and solid (wood).
Quality Of Sound
A sound or a sound wave is defined as the energy produced due to the vibrations of particles in a medium. When any medium produces a disturbance or vibrations, it causes a movement in the air particles which produces sound waves. Molecules in the air vibrate about a certain average position and create compressions and rarefactions. This is called pitch which is defined as the frequency of sound. The frequency is defined as the number of oscillations in pressure per second.
Categories of Sound Wave
People perceive sound in different ways, like a medico student takes sound as vibration produced by objects reaching the human eardrum. A physicist perceives sound as vibration produced by an object, which produces disturbances in nearby air molecules that travel further. Both of them describe it as vibration generated by an object, the difference is one talks about how it is received and other deals with how it travels and propagates across various mediums.
One string of a certain musical instrument is 74.0 cm long and has a mass of 8.76 g. It is being played in a room where the speed of sound is 344 m/s.
To what tension must you adjust the string so that, when vibrating in its second overtone, it produces sound of wavelength 0.760 m ? (Assume that the breaking stress of the wire is very large and isn’t exceeded.)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images