One of the steps involved in the processing of corn flakes for cereals involves toasting the flakes. The accompanying table contains data for corn flakes thickness in millimeters for four different toasting times in seconds. Complete parts​ (a) through​ (d) below.   Perform a​ one-way ANOVA. Find the test statistic.   FSTAT=? ​(Type an integer or decimal rounded to two decimal places as​ needed.)

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Topic Video
Question
100%

One of the steps involved in the processing of corn flakes for cereals involves toasting the flakes. The accompanying table contains data for corn flakes thickness in millimeters for four different toasting times in seconds. Complete parts​ (a) through​ (d) below.

 

Perform a​ one-way ANOVA. Find the test statistic.
 
FSTAT=?
​(Type an integer or decimal rounded to two decimal places as​ needed.)
O Corn Flake Thickness
20 sec
40 sec
60 sec
80 sec
1.1
1.5
1.7
1.8
0.8
1.6
1.4
0.7
0.8
0.7
0.7
0.4
Print
Done
Transcribed Image Text:O Corn Flake Thickness 20 sec 40 sec 60 sec 80 sec 1.1 1.5 1.7 1.8 0.8 1.6 1.4 0.7 0.8 0.7 0.7 0.4 Print Done
Critical values of the Studentized Range, Q
Upper 5% Points (a = 0.05)
Denominator,
Numerator, df
af
6 7
3
4
5
8
9.
10
17.97 26.98
32.82
37.08
40.41
43.12
45.40
47.36
13.54
49.07
2
6.09
8.33
9.80
10.88
11.74
12.44
13.03
13.99
4.50
5.91
6.83
7.50
8.04
8.48
885
9.18
9.46
3.93
5.04
5.76
6.29
6.71
7.05
7.35
7.60
7.83
3.64
4.60
5.22
5.67
6.03
6.33
658
6.80
7.00
6.
3.46
4.34
4.90
5.31
5.63
5.90
6.12
6.32
6.49
7
3.34
4.17
4.68
5.06
5.36
5.61
582
6.00
6.16
3.26
4.04
4.53
4.89
5.17
5.40
5.60
5.77
5.92
9.
3.20
3.95
4.42
4.76
5.02
5.24
5.43
5.60
5.74
10
3.15
4.33
4.65
3.88
3.82
4.91
5.12
531
5.46
5.60
11
3.11
4.26
4.57
4.82
5.03
5.20
5.35
5.49
12
3.08
3.77
4.20
4.51
4.75
4.95
5.12
5.27
5.40
5.19
513
13
3.06
3.74
4.15
4.45
4.69
4.89
5.05
5.32
14
3.03
3.70
4.11
4.41
4.64
4.83
4.99
5.25
15
3.01
3.67
4.08
4.37
4.60
4.78
4.94
5.08
5.20
16
3.00
3.65
4.05
4.33
4.56
4.74
4.90
5.03
5.15
17
2.98
3.63
4.02
4.30
4.52
4.71
4.86
4.99
5.11
18
2.97
3.61
4.00
4.28
4.50
4.67
4.82
4.96
5.07
19
2.96
3.59
3.98
4.25
4.47
4.65
4.79
4.92
5.04
20
2.95
3.58
3.96
4.23
4.45
4.62
4.77
4.90
5.01
24
2.92
3.53
3.90
4.17
4.37
4.54
4.68
4.81
4.92
30
2.89
3.49
3.85
4.10
4.30
4.46
4.60
4.72
4.82
40
2.86
3.44
3.79
4.04
4.23
4.39
4.52
4.64
4.74
60
2.83
3.40
3.74
3.98
4.16
4.31
444
4.55
4.65
3.69
3.63
120
2.80
3.36
3.92
4.10
4.24
4.36
4.47
4.56
00
2.77
3.31
3.86
4.03
4.17
4.29
4.39
4.47
Print
Done
Transcribed Image Text:Critical values of the Studentized Range, Q Upper 5% Points (a = 0.05) Denominator, Numerator, df af 6 7 3 4 5 8 9. 10 17.97 26.98 32.82 37.08 40.41 43.12 45.40 47.36 13.54 49.07 2 6.09 8.33 9.80 10.88 11.74 12.44 13.03 13.99 4.50 5.91 6.83 7.50 8.04 8.48 885 9.18 9.46 3.93 5.04 5.76 6.29 6.71 7.05 7.35 7.60 7.83 3.64 4.60 5.22 5.67 6.03 6.33 658 6.80 7.00 6. 3.46 4.34 4.90 5.31 5.63 5.90 6.12 6.32 6.49 7 3.34 4.17 4.68 5.06 5.36 5.61 582 6.00 6.16 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 9. 3.20 3.95 4.42 4.76 5.02 5.24 5.43 5.60 5.74 10 3.15 4.33 4.65 3.88 3.82 4.91 5.12 531 5.46 5.60 11 3.11 4.26 4.57 4.82 5.03 5.20 5.35 5.49 12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.40 5.19 513 13 3.06 3.74 4.15 4.45 4.69 4.89 5.05 5.32 14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.25 15 3.01 3.67 4.08 4.37 4.60 4.78 4.94 5.08 5.20 16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 17 2.98 3.63 4.02 4.30 4.52 4.71 4.86 4.99 5.11 18 2.97 3.61 4.00 4.28 4.50 4.67 4.82 4.96 5.07 19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.64 4.74 60 2.83 3.40 3.74 3.98 4.16 4.31 444 4.55 4.65 3.69 3.63 120 2.80 3.36 3.92 4.10 4.24 4.36 4.47 4.56 00 2.77 3.31 3.86 4.03 4.17 4.29 4.39 4.47 Print Done
Expert Solution
Step 1

ANOVA: The analysis of variance (ANOVA) is used to determine whether there are any statistically significant differences between the population means (μ) of more than two independents (unrelated) groups.

The null and alternative hypothesis are,

H0: There is no significant difference between the treatment means (μ).

H1: At least one treatment differs significantly.

OR

H0 : μ1 = μ2 = μ3 = μ4H1 : μ1  μ2  μ3  μ4

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Centre, Spread, and Shape of a Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman