On a spacecraft two engines fire for a time of 389 s. One gives the craft an acceleration in the x direction of ax = 3.41 m/s^2, while the other produces an acceleration in the y direction of ay = 7.34 m/s^2. At the end of the firing period, the craft has velocity components of vx = 1860 m/s and vy = 4290 m/s. Find the (a) magnitude and (b) direction of the initial velocity. Express the direction as an angle with respect to the +x axis.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
On a spacecraft two engines fire for a time of 389 s. One gives the craft an acceleration in the x direction of ax = 3.41 m/s^2, while the other produces an acceleration in the y direction of ay = 7.34 m/s^2. At the end of the firing period, the craft has velocity components of vx = 1860 m/s and vy = 4290 m/s.
Find the (a) magnitude and (b) direction of the initial velocity.
Express the direction as an angle with respect to the +x axis.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images