of Linear Equations and 22. A = [²29]

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
1.4 19 and 22 please on paper ( theyr very short thank youu)
---

### Chapter 1: Systems of Linear Equations and Matrices

---

#### Exercises 21-28

**21.** 
\[ A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \]

**22.** 
\[ A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \]

In Exercises 23-24, let

\[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \]

**23.** Find all values of \( a \), \( b \), \( c \), and \( d \) (if any) for which the matrices \( A \) and \( B \) commute.

**24.** Find all values of \( a \), \( b \), \( c \), and \( d \) (if any) for which the matrices \( A \) and \( C \) commute.

In Exercises 25-28, use the method of Example 8 to find the unique solution of the given linear system.

**25.** 
\[ \begin{aligned}
3x_{1} - 2x_{2} &= -1 \\
4x_{1} + 5x_{2} &= 3
\end{aligned} \]

**26.** 
\[ \begin{aligned}
-x_{1} + 5x_{2} &= 4 \\
-x_{1} - 3x_{2} &= 1
\end{aligned} \]

**28.** 
\[ \begin{aligned}
2x_{1} - 2x_{2} &= 4 \\
x_{1} + 4x_{2} &= 4
\end{aligned} \]

A polynomial \( p(x) \) can be factored as a product of lower degree polynomials, say
\[ p(x) = p_1(x)p_2(x) \]

If \( A \) is a square matrix, then it can be proved that
\[ p(A) =
Transcribed Image Text:--- ### Chapter 1: Systems of Linear Equations and Matrices --- #### Exercises 21-28 **21.** \[ A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \] **22.** \[ A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \] In Exercises 23-24, let \[ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \] **23.** Find all values of \( a \), \( b \), \( c \), and \( d \) (if any) for which the matrices \( A \) and \( B \) commute. **24.** Find all values of \( a \), \( b \), \( c \), and \( d \) (if any) for which the matrices \( A \) and \( C \) commute. In Exercises 25-28, use the method of Example 8 to find the unique solution of the given linear system. **25.** \[ \begin{aligned} 3x_{1} - 2x_{2} &= -1 \\ 4x_{1} + 5x_{2} &= 3 \end{aligned} \] **26.** \[ \begin{aligned} -x_{1} + 5x_{2} &= 4 \\ -x_{1} - 3x_{2} &= 1 \end{aligned} \] **28.** \[ \begin{aligned} 2x_{1} - 2x_{2} &= 4 \\ x_{1} + 4x_{2} &= 4 \end{aligned} \] A polynomial \( p(x) \) can be factored as a product of lower degree polynomials, say \[ p(x) = p_1(x)p_2(x) \] If \( A \) is a square matrix, then it can be proved that \[ p(A) =
# Educational Website Transcription: Matrix and Polynomial Operations

## Problem 10
Find the inverse of the matrix:
\[ \begin{bmatrix}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{bmatrix} \]

## Exercises 11-14
Verify that the equations are valid for the matrices in Exercises 5-8.

**Exercise 11:** 
\[ (A^T)^{-1} = (A^{-1})^T \]

**Exercise 12:** 
\[ (A^{-1})^{-1} = A \]

**Exercise 13:** 
\[ (ABC)^{-1} = C^{-1}B^{-1}A^{-1} \]

**Exercise 14:** 
\[ (ABC)^T = C^TB^TA^T \]

## Exercises 15-18
Use the given information to find matrix \( A \).

**Exercise 15:** 
\[ (7A)^{-1} = \begin{bmatrix}
-3 & 7 \\
1 & -2
\end{bmatrix} \]

**Exercise 16:** 
\[ (5A^T)^{-1} = \begin{bmatrix}
-3 & -1 \\
5 & -2
\end{bmatrix} \]

**Exercise 17:** 
\[ (I + 2A)^{-1} = \begin{bmatrix}
1 & 2 \\
4 & 5
\end{bmatrix} \]

**Exercise 18:** 
\[ A^{-1} = \begin{bmatrix}
2 & -1 \\
3 & -5
\end{bmatrix} \]

## Exercises 19-20
Compute the following using the given matrix \( A \).

**Exercise 19:** 
\[ A = \begin{bmatrix}
3 & 1 \\
2 & 1
\end{bmatrix} \]
- **Part a:** \( A^3 \)
- **Part b:** \( A^{-3} \)
- **Part c:** \( A^2 - 2A + I \)

**Exercise 20:** 
\[ A = \begin{bmatrix}
2 & 0 \\
4 & 1
\end{bmatrix} \]

## Exercises 21-22
Compute \( p(A) \) for the given
Transcribed Image Text:# Educational Website Transcription: Matrix and Polynomial Operations ## Problem 10 Find the inverse of the matrix: \[ \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \] ## Exercises 11-14 Verify that the equations are valid for the matrices in Exercises 5-8. **Exercise 11:** \[ (A^T)^{-1} = (A^{-1})^T \] **Exercise 12:** \[ (A^{-1})^{-1} = A \] **Exercise 13:** \[ (ABC)^{-1} = C^{-1}B^{-1}A^{-1} \] **Exercise 14:** \[ (ABC)^T = C^TB^TA^T \] ## Exercises 15-18 Use the given information to find matrix \( A \). **Exercise 15:** \[ (7A)^{-1} = \begin{bmatrix} -3 & 7 \\ 1 & -2 \end{bmatrix} \] **Exercise 16:** \[ (5A^T)^{-1} = \begin{bmatrix} -3 & -1 \\ 5 & -2 \end{bmatrix} \] **Exercise 17:** \[ (I + 2A)^{-1} = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix} \] **Exercise 18:** \[ A^{-1} = \begin{bmatrix} 2 & -1 \\ 3 & -5 \end{bmatrix} \] ## Exercises 19-20 Compute the following using the given matrix \( A \). **Exercise 19:** \[ A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \] - **Part a:** \( A^3 \) - **Part b:** \( A^{-3} \) - **Part c:** \( A^2 - 2A + I \) **Exercise 20:** \[ A = \begin{bmatrix} 2 & 0 \\ 4 & 1 \end{bmatrix} \] ## Exercises 21-22 Compute \( p(A) \) for the given
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education