Observers in the Earth frame observe two flashes of light, flash A at t, =0 , x, =0 and %3D -6 flash B at t, =+1.25×10°s , Xp = 700. m .Observers in a frame moving at speed parameter B = 0.600 in the +x direction observe flash A at t', = 0 , x, = 0. Where in the moving frame does flash B occur – i.e. what is x, ? а. b. Which flash occurs first in the moving frame? At what time does flash B occur in the moving frame – i.e. what is t ? с. d. Can flash B cause flash A?
Observers in the Earth frame observe two flashes of light, flash A at t, =0 , x, =0 and %3D -6 flash B at t, =+1.25×10°s , Xp = 700. m .Observers in a frame moving at speed parameter B = 0.600 in the +x direction observe flash A at t', = 0 , x, = 0. Where in the moving frame does flash B occur – i.e. what is x, ? а. b. Which flash occurs first in the moving frame? At what time does flash B occur in the moving frame – i.e. what is t ? с. d. Can flash B cause flash A?
Related questions
Question
![5.
Observers in the Earth frame observe two flashes of light, flash A at t, = 0, x, =0 and
flash B at t, =+1.25×10°s , Xp = 700. m .Observers in a frame moving at speed parameter
B = 0.600 in the +x direction observe flash A at t', = 0 , x = 0.
А
а.
Where in the moving frame does flash B occur – i.e. what is x, ?
b. Which flash occurs first in the moving frame?
At what time does flash B occur in the moving frame - i.e. what is t ?
С.
d. Can flash B cause flash A?](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff740d5a2-8340-4a4f-8f2b-961ac2a3bcac%2F4a4310ec-aa98-41a5-b105-44a0a3623044%2Fkc8n9gp_processed.png&w=3840&q=75)
Transcribed Image Text:5.
Observers in the Earth frame observe two flashes of light, flash A at t, = 0, x, =0 and
flash B at t, =+1.25×10°s , Xp = 700. m .Observers in a frame moving at speed parameter
B = 0.600 in the +x direction observe flash A at t', = 0 , x = 0.
А
а.
Where in the moving frame does flash B occur – i.e. what is x, ?
b. Which flash occurs first in the moving frame?
At what time does flash B occur in the moving frame - i.e. what is t ?
С.
d. Can flash B cause flash A?
![Waves in general:
FORMULA PAGE 1
a y
1-dimensional wave equation:
1 a'y
; here v is the speed of the wave
v? ôt?
Solution: f(x- vt) or f(x+vt)
Harmonic or sinusoidal waves: y(x,t)= Asin(kx- ot)
2л
k
2n
= 27f; v=-
T
v = f2
General Constants:
-34
h = 6.626×10*J.s = 4.13567×10¬eV ·s ; (with recent revisions to the SI system of
units Planck's Constant is defined to have an exact value: h= 6.62607015×10¯“J·s)
–34
-19
hc = 1240 eV · nm; hc=1239.84eV · nm (for more accuracy); leV =1.6022×10-J
= 299,792, 458 m /s (exact);
-31
electron mass: m, =9.1094×10' kg
proton mass: m,
=1.6726×10-27 kg
Photons: E = hf
hc
; Protons: m,c² = 938.3MEV , Electrons: m.c² = 511.0keV
%3|
h
= 1.0546x10 34J•s = 6.5821×10-1eV ·s
Chapter 36. Diffraction
Single slit diffraction:
Minima:
a sin 0, = ma, m=1,2,3,...where a is the slit width, note: there is a maximum at
0 = 0
sin(a)
па
Intensity:
I(0) = ,,
a =
-sin(0)
m
a
Circular aperture: First minimum: sin 0 = 1.22-
Rayleigh's criterion ( 1 <d ): a =1.22-
d
Double slit experiment with slit separation d and slit width a:
sin a
Intensity: I(0) = I„(cos? B)|
where
B =
-sin 0 , a =
па
-sin O
Grating equation (normal incidence): d sin 0 = m
order in which the grating is being used, d is the line or groove spacing
m
= 0,1, 2,3,... (maxima), where m is the](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff740d5a2-8340-4a4f-8f2b-961ac2a3bcac%2F4a4310ec-aa98-41a5-b105-44a0a3623044%2Fi95qz5o_processed.png&w=3840&q=75)
Transcribed Image Text:Waves in general:
FORMULA PAGE 1
a y
1-dimensional wave equation:
1 a'y
; here v is the speed of the wave
v? ôt?
Solution: f(x- vt) or f(x+vt)
Harmonic or sinusoidal waves: y(x,t)= Asin(kx- ot)
2л
k
2n
= 27f; v=-
T
v = f2
General Constants:
-34
h = 6.626×10*J.s = 4.13567×10¬eV ·s ; (with recent revisions to the SI system of
units Planck's Constant is defined to have an exact value: h= 6.62607015×10¯“J·s)
–34
-19
hc = 1240 eV · nm; hc=1239.84eV · nm (for more accuracy); leV =1.6022×10-J
= 299,792, 458 m /s (exact);
-31
electron mass: m, =9.1094×10' kg
proton mass: m,
=1.6726×10-27 kg
Photons: E = hf
hc
; Protons: m,c² = 938.3MEV , Electrons: m.c² = 511.0keV
%3|
h
= 1.0546x10 34J•s = 6.5821×10-1eV ·s
Chapter 36. Diffraction
Single slit diffraction:
Minima:
a sin 0, = ma, m=1,2,3,...where a is the slit width, note: there is a maximum at
0 = 0
sin(a)
па
Intensity:
I(0) = ,,
a =
-sin(0)
m
a
Circular aperture: First minimum: sin 0 = 1.22-
Rayleigh's criterion ( 1 <d ): a =1.22-
d
Double slit experiment with slit separation d and slit width a:
sin a
Intensity: I(0) = I„(cos? B)|
where
B =
-sin 0 , a =
па
-sin O
Grating equation (normal incidence): d sin 0 = m
order in which the grating is being used, d is the line or groove spacing
m
= 0,1, 2,3,... (maxima), where m is the
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)