nx 4. Let fn(x) = 1+7²², x € R. Prove that fn → 0 pointwise on R, then check whether fn → 0 uniformly or not on [0, 1]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**4.** Let \( f_n(x) = \frac{nx}{1+n^2x^2}, x \in \mathbb{R}. \) Prove that \( f_n \to 0 \) pointwise on \( \mathbb{R} \), then check whether \( f_n \to 0 \) uniformly or not on \([0,1]\).

**5.** Same \( f_n \) in Q4, check whether \( f_n \to 0 \) uniformly or not on \([1,\infty)\).
Transcribed Image Text:**4.** Let \( f_n(x) = \frac{nx}{1+n^2x^2}, x \in \mathbb{R}. \) Prove that \( f_n \to 0 \) pointwise on \( \mathbb{R} \), then check whether \( f_n \to 0 \) uniformly or not on \([0,1]\). **5.** Same \( f_n \) in Q4, check whether \( f_n \to 0 \) uniformly or not on \([1,\infty)\).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

do the second question 

Solution
Bartleby Expert
SEE SOLUTION
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,