Normal heptane is dehydrocyclicized to toluene and hydrogen in a continuous vapor-phase reaction: C7H16 → C6H5CH3 + 4 H2 Pure heptane at 400°C is fed to the reactor at a rate of 100 mol/s. The reactor operates isothermally at 400°C and the reaction goes to completion. Data: The average heat capacity of nheptane between 25°C and 400°C is 0.2427 kJ/(mol°C). Calculate the required heat transfer to or from the reactor in kJ/s. What is the heat of the heptane dehydrocyclization reaction at 400°C and 1 atm?
Normal heptane is dehydrocyclicized to toluene and hydrogen in a continuous vapor-phase reaction: C7H16 → C6H5CH3 + 4 H2 Pure heptane at 400°C is fed to the reactor at a rate of 100 mol/s. The reactor operates isothermally at 400°C and the reaction goes to completion. Data: The average heat capacity of nheptane between 25°C and 400°C is 0.2427 kJ/(mol°C). Calculate the required heat transfer to or from the reactor in kJ/s. What is the heat of the heptane dehydrocyclization reaction at 400°C and 1 atm?
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question
100%
Normal heptane is dehydrocyclicized to toluene and hydrogen in a continuous vapor-phase
reaction:
C7H16 → C6H5CH3 + 4 H2
Pure heptane at 400°C is fed to the reactor at a rate of 100 mol/s. The reactor operates
isothermally at 400°C and the reaction goes to completion. Data: The average heat capacity of nheptane between 25°C and 400°C is 0.2427 kJ/(mol°C). Calculate the required heat transfer to or
from the reactor in kJ/s. What is the heat of the heptane dehydrocyclization reaction at 400°C and
1 atm?
![C, (NO)=29.5x10-3 +0.8188x10-s T -0.2925x10-8T2+0.3653x10-12T3
[kJ/molK]
AHE (kJ/mol)
NH3
-46.19
NO
90.37
C, (kJ/molK)
34.31 x10-3+ 5.469x10-ST+0.3661x10-8T2-11x10-12T3
29.1 x10-3+ 1.158x10-5T-0.6076x10-8T2+1.311 x10-12T3
29 x10-3+ 0.2199x10-ST+0.5723x10-8T2-2.871 x10-12T3
AHº (kJ/mol)
CH4
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
-74.85
02
N2
НСНО
-115.9
34.28 x10-3+ 4.268x10-5T-8.694x10-12T3
CO2
-393.5
36.11x10-3 + 4.233x10-5T-2.887x10-8T2
H20(v)
-241.83
33.46 x10-34 0.6880x10-ST+0.7604x10-8T2-3.593x10-12T3
C2H5OH
-235.31
61.34 x10-3+ 15.72x10-ST-8.749x10-8T²+19.83x10-12T3
CH3CHO
-166.2
0.05048+ 1.326X104T-8.050x10$T²+2.380 x10-11T³
H2
28.84x10-3+0.00765x10-5T+0.3288x10-8T2-0.8698x10-12T3
C7H16
-187.8
0.2427
C6HSCH3
50
94.18 x10-3+ 38x10-5T-27.86x10-8T2+8.033x10-12T3
T(°C) |
(C2H5)20(1)
-272.8
0.08945+ 40.33x10-5T-2.244x10-7T2 T(°C)_
C2H4
52.28
40.75 x10-3+ 11.47x10-5T-6.891x10-8T2+17.66x10-12T3
C2H40
-51
-4.69+0.2061T-9.995X10-ST²
(J/molK)
T(K)
H20(1)
-285.84
Heat of vaporization of diethylether =26.05 kJ/mol
Table B.8 Specific Enthalpies of Selected Gases: SI Units
À(kJ/mol)
Reference state: Gas, Pret = 1 atm, Tref = 25°C
Air
co
CO:
H;O
-0.72
-0.73
-0.73
-0.72
-0.73
-0.92
-0.84
25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.19
2.19
2.16
2.54
6.01
9.57
13.23
100
2.24
2.19
2.90
200
5.15
5.31
8.47
5.13
5.06
5.16
7.08
300
8.17
8.12
7.96
8.17
11.58
400
11.24
11.72
11.15
10.89
11.25
16.35
500
14.37
15.03
14.24
13.83
14.38
21.34
17.01
600
17.55
18.41
17.39
16.81
17.57
26.53
20.91
20.59
23.86
27.19
30.56
19.81
22.85
700
20.80
21.86
20.82
31.88
24.92
29.05
33.32
37.69
800
24.10
25.35
24.13
37.36
900
27.46
25.93
28.89
32.47
27.49
42.94
1000
30.86
29.04
30.91
48.60
1100
34.31
36.07
33.99
32.19
34.37
54.33
42.18
35.39
37.81
41.34
1200
39.70
37.46
37.87
60.14
46.78
1300
43.38
47.07
40.97
38.62
41.40
65.98
51.47
56.25
61.09
1400
44.89
44.51
41.90
44.95
71.89
1500
48.45
50.77
48.06
45.22
48.51
77.84](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3516e233-9e19-437d-961a-9e7543b5446e%2Fb5b1a2e5-ccf9-4081-8c7a-14bd58581cf9%2Fsk5krhk_processed.png&w=3840&q=75)
Transcribed Image Text:C, (NO)=29.5x10-3 +0.8188x10-s T -0.2925x10-8T2+0.3653x10-12T3
[kJ/molK]
AHE (kJ/mol)
NH3
-46.19
NO
90.37
C, (kJ/molK)
34.31 x10-3+ 5.469x10-ST+0.3661x10-8T2-11x10-12T3
29.1 x10-3+ 1.158x10-5T-0.6076x10-8T2+1.311 x10-12T3
29 x10-3+ 0.2199x10-ST+0.5723x10-8T2-2.871 x10-12T3
AHº (kJ/mol)
CH4
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
T(°C)
-74.85
02
N2
НСНО
-115.9
34.28 x10-3+ 4.268x10-5T-8.694x10-12T3
CO2
-393.5
36.11x10-3 + 4.233x10-5T-2.887x10-8T2
H20(v)
-241.83
33.46 x10-34 0.6880x10-ST+0.7604x10-8T2-3.593x10-12T3
C2H5OH
-235.31
61.34 x10-3+ 15.72x10-ST-8.749x10-8T²+19.83x10-12T3
CH3CHO
-166.2
0.05048+ 1.326X104T-8.050x10$T²+2.380 x10-11T³
H2
28.84x10-3+0.00765x10-5T+0.3288x10-8T2-0.8698x10-12T3
C7H16
-187.8
0.2427
C6HSCH3
50
94.18 x10-3+ 38x10-5T-27.86x10-8T2+8.033x10-12T3
T(°C) |
(C2H5)20(1)
-272.8
0.08945+ 40.33x10-5T-2.244x10-7T2 T(°C)_
C2H4
52.28
40.75 x10-3+ 11.47x10-5T-6.891x10-8T2+17.66x10-12T3
C2H40
-51
-4.69+0.2061T-9.995X10-ST²
(J/molK)
T(K)
H20(1)
-285.84
Heat of vaporization of diethylether =26.05 kJ/mol
Table B.8 Specific Enthalpies of Selected Gases: SI Units
À(kJ/mol)
Reference state: Gas, Pret = 1 atm, Tref = 25°C
Air
co
CO:
H;O
-0.72
-0.73
-0.73
-0.72
-0.73
-0.92
-0.84
25
0.00
0.00
0.00
0.00
0.00
0.00
0.00
2.19
2.19
2.16
2.54
6.01
9.57
13.23
100
2.24
2.19
2.90
200
5.15
5.31
8.47
5.13
5.06
5.16
7.08
300
8.17
8.12
7.96
8.17
11.58
400
11.24
11.72
11.15
10.89
11.25
16.35
500
14.37
15.03
14.24
13.83
14.38
21.34
17.01
600
17.55
18.41
17.39
16.81
17.57
26.53
20.91
20.59
23.86
27.19
30.56
19.81
22.85
700
20.80
21.86
20.82
31.88
24.92
29.05
33.32
37.69
800
24.10
25.35
24.13
37.36
900
27.46
25.93
28.89
32.47
27.49
42.94
1000
30.86
29.04
30.91
48.60
1100
34.31
36.07
33.99
32.19
34.37
54.33
42.18
35.39
37.81
41.34
1200
39.70
37.46
37.87
60.14
46.78
1300
43.38
47.07
40.97
38.62
41.40
65.98
51.47
56.25
61.09
1400
44.89
44.51
41.90
44.95
71.89
1500
48.45
50.77
48.06
45.22
48.51
77.84
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The