Nitrogen, modeled as an ideal gas, flows at a rate of 3 kg/s through a well-insulated horizontal nozzle operating at steady state. The nitrogen enters the nozzle with a velocity of 20 m/s at 340 K, 400 kPa and exits the nozzle at 100 kPa. To achieve an exit velocity of 478.8 m/s, determine a. the exit temperature, in K. b. the exit area, in m².

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Nitrogen, modeled as an ideal gas, flows at a rate of 3 kg/s through a well-insulated horizontal nozzle operating
at steady state. The nitrogen enters the nozzle with a velocity of 20 m/s at 340 K, 400 kPa and exits the nozzle
at 100 kPa. To achieve an exit velocity of 478.8 m/s, determine
a. the exit temperature, in K.
b. the exit area, in m².
Transcribed Image Text:Nitrogen, modeled as an ideal gas, flows at a rate of 3 kg/s through a well-insulated horizontal nozzle operating at steady state. The nitrogen enters the nozzle with a velocity of 20 m/s at 340 K, 400 kPa and exits the nozzle at 100 kPa. To achieve an exit velocity of 478.8 m/s, determine a. the exit temperature, in K. b. the exit area, in m².
Expert Solution
Step 1

Given data 

Mass flow rate = 3 kg/s

V1=20m/s, T1=340K and P1= 400kPa

And V2=478.8m/s and P2 = 100kPa

Find the exit temperature and area at exit 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Compressible Flow
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY