33-41 Use logarithmic differentiation to find the derivative of the function. 33. y = (2x + 1)³(x² − 3)6 34. y = √√√xe²(x² + 1) ¹0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

33 and 37

**Use logarithmic differentiation to find the derivative of the function.**

**33.** \( y = (2x + 1)^5(x^4 - 3)^6 \)

**34.** \( y = \sqrt{x} e^{x^2} (x^2 + 1)^{10} \)

**35.** \( y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \)

**36.** \( y = \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}} \)

**37.** \( y = x^x \)

**38.** \( y = x^{\cos x} \)
Transcribed Image Text:**Use logarithmic differentiation to find the derivative of the function.** **33.** \( y = (2x + 1)^5(x^4 - 3)^6 \) **34.** \( y = \sqrt{x} e^{x^2} (x^2 + 1)^{10} \) **35.** \( y = \frac{\sin^2 x \tan^4 x}{(x^2 + 1)^2} \) **36.** \( y = \sqrt[4]{\frac{x^2 + 1}{x^2 - 1}} \) **37.** \( y = x^x \) **38.** \( y = x^{\cos x} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

New question: 37 please as well

Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning