Nationally, about 11% of the total U.S. wheat crop is destroyed each year by hail.+ An insurance company is studying wheat hail damage claims in a county in Colorado. A random sample of 16 claims in the county reported the percentage of their wheat lost to hail. 13 7 7 9 11 19 12 12 98 24 20 12 8 13 5 The sample mean is x 11.8%. Let x be a random variable that represents the percentage of wheat crop in that county lost to hail. Assume that x has a normal distribution and σ = 5.0%. Do these data indicate that the percentage of wheat crop lost to hail in that county is different (either way) from the national mean of 11%? Use a 0.01. (a) What is the level of significance? State the null and alternate hypotheses. Will you use a left-tailed, right-tailed, or two-tailed test? 11%; H₁: +11%; two-tailed Ho: Ho: 11%; H₁ = 11%; two-tailed Ho: 11%; H₁: > 11%; right-tailed Ho: H 11%; H₁: < 11%; left-tailed (b) What sampling distribution will you use? Explain the rationale for your choice of sampling distribution. The Student's t, since n is large with unknown σ. The Student's t, since we assume that x has a normal distribution with known σ. The standard normal, since we assume that x has a normal distribution with known σ. The standard normal, since we assume that x has a normal distribution with unknown σ. Compute the z value of the sample test statistic. (Round your answer to two decimal places.) (c) Find (or estimate) the P-value. (Round your answer to four decimal places.) Sketch the sampling distribution and show the area corresponding to the P-value. -2 0 1 2 -2 -1 0 -2 1 2 -2 (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level a? At the a=0.01 level, we reject the null hypothesis and conclude the data are statistically significant. At the a 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant. At the a=0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the a 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (e) State your conclusion in the context of the application. Submit Answer is sufficient evidence at the 0.01 level to conclude that the average hail damage to wheat in the county in Colorado differs from the national average. There is insufficient evidence at the 0.01 level to conclude that the average hail damage to wheat crops in the county in Colorado differs from the national average.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
The manufacturer of a sports car claims that the fuel injection system lasts 48 months before it needs to be replaced. A consumer group tests this claim by surveying a random sample of 10 owners who had the fuel injection system replaced. The ages of the cars at the time of replacement were (in months):
Nationally, about 11% of the total U.S. wheat crop is destroyed each year by hail.+ An insurance company is
studying wheat hail damage claims in a county in Colorado. A random sample of 16 claims in the county
reported the percentage of their wheat lost to hail.
13 7 7 9 11 19 12 12
98
24 20 12 8 13 5
The sample mean is x 11.8%. Let x be a random variable that represents the percentage of wheat crop in
that county lost to hail. Assume that x has a normal distribution and σ = 5.0%. Do these data indicate that
the percentage of wheat crop lost to hail in that county is different (either way) from the national mean of
11%? Use a 0.01.
(a) What is the level of significance?
State the null and alternate hypotheses. Will you use a left-tailed, right-tailed, or two-tailed test?
11%; H₁: +11%; two-tailed
Ho:
Ho:
11%; H₁
= 11%; two-tailed
Ho:
11%; H₁:
> 11%; right-tailed
Ho: H 11%; H₁:
< 11%; left-tailed
(b) What sampling distribution will you use? Explain the rationale for your choice of sampling
distribution.
The Student's t, since n is large with unknown σ.
The Student's t, since we assume that x has a normal distribution with known σ.
The standard normal, since we assume that x has a normal distribution with known σ.
The standard normal, since we assume that x has a normal distribution with unknown σ.
Compute the z value of the sample test statistic. (Round your answer to two decimal places.)
(c) Find (or estimate) the P-value. (Round your answer to four decimal places.)
Sketch the sampling distribution and show the area corresponding to the P-value.
-2
0
1
2
-2
-1
0
-2
1
2
-2
(d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are
the data statistically significant at level a?
At the a=0.01 level, we reject the null hypothesis and conclude the data are statistically
significant.
At the a 0.01 level, we reject the null hypothesis and conclude the data are not statistically
significant.
At the a=0.01 level, we fail to reject the null hypothesis and conclude the data are statistically
significant.
At the a 0.01 level, we fail to reject the null hypothesis and conclude the data are not
statistically significant.
(e) State your conclusion in the context of the application.
Submit Answer
is sufficient evidence at the 0.01 level to conclude that the average hail damage to wheat
in the county in Colorado differs from the national average.
There is insufficient evidence at the 0.01 level to conclude that the average hail damage to
wheat crops in the county in Colorado differs from the national average.
Transcribed Image Text:Nationally, about 11% of the total U.S. wheat crop is destroyed each year by hail.+ An insurance company is studying wheat hail damage claims in a county in Colorado. A random sample of 16 claims in the county reported the percentage of their wheat lost to hail. 13 7 7 9 11 19 12 12 98 24 20 12 8 13 5 The sample mean is x 11.8%. Let x be a random variable that represents the percentage of wheat crop in that county lost to hail. Assume that x has a normal distribution and σ = 5.0%. Do these data indicate that the percentage of wheat crop lost to hail in that county is different (either way) from the national mean of 11%? Use a 0.01. (a) What is the level of significance? State the null and alternate hypotheses. Will you use a left-tailed, right-tailed, or two-tailed test? 11%; H₁: +11%; two-tailed Ho: Ho: 11%; H₁ = 11%; two-tailed Ho: 11%; H₁: > 11%; right-tailed Ho: H 11%; H₁: < 11%; left-tailed (b) What sampling distribution will you use? Explain the rationale for your choice of sampling distribution. The Student's t, since n is large with unknown σ. The Student's t, since we assume that x has a normal distribution with known σ. The standard normal, since we assume that x has a normal distribution with known σ. The standard normal, since we assume that x has a normal distribution with unknown σ. Compute the z value of the sample test statistic. (Round your answer to two decimal places.) (c) Find (or estimate) the P-value. (Round your answer to four decimal places.) Sketch the sampling distribution and show the area corresponding to the P-value. -2 0 1 2 -2 -1 0 -2 1 2 -2 (d) Based on your answers in parts (a) to (c), will you reject or fail to reject the null hypothesis? Are the data statistically significant at level a? At the a=0.01 level, we reject the null hypothesis and conclude the data are statistically significant. At the a 0.01 level, we reject the null hypothesis and conclude the data are not statistically significant. At the a=0.01 level, we fail to reject the null hypothesis and conclude the data are statistically significant. At the a 0.01 level, we fail to reject the null hypothesis and conclude the data are not statistically significant. (e) State your conclusion in the context of the application. Submit Answer is sufficient evidence at the 0.01 level to conclude that the average hail damage to wheat in the county in Colorado differs from the national average. There is insufficient evidence at the 0.01 level to conclude that the average hail damage to wheat crops in the county in Colorado differs from the national average.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman