n order to reduce vibrations being transmitted to the floor, a machine of mass m = 150kg is supported on 4 helical steel springs together with 4 dashpots which all act in parallel with each other. The stiffness of each spring is given by k1= 3.7 MN/m, and the damping coefficient of each dash-pot is given by c1 = 6.1kNs/m. To test how well the isolation system works, the machine is turned off and a shaker that produces a driving force of 100N at a frequency of 65 Hz is attached to the machine, causing it to vibrate. The mass of the shaker is negligible compared to the mass of the machine. Use a phasor diagram to determine: The displacement amplitude X of the machine, The phase angle by which the driving force leads the displacement
n order to reduce vibrations being transmitted to the floor, a machine of mass m = 150kg is supported on 4 helical steel springs together with 4 dashpots which all act in parallel with each other. The stiffness of each spring is given by k1= 3.7 MN/m, and the damping coefficient of each dash-pot is given by c1 = 6.1kNs/m. To test how well the isolation system works, the machine is turned off and a shaker that produces a driving force of 100N at a frequency of 65 Hz is attached to the machine, causing it to vibrate. The mass of the shaker is negligible compared to the mass of the machine. Use a phasor diagram to determine: The displacement amplitude X of the machine, The phase angle by which the driving force leads the displacement
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
In order to reduce vibrations being transmitted to the floor, a machine of mass m = 150kg is supported on 4 helical steel springs together with 4 dashpots which all act in parallel with each other. The stiffness of each spring is given by k1= 3.7 MN/m, and the damping coefficient of each dash-pot is given by c1 = 6.1kNs/m. To test how well the isolation system works, the machine is turned off and a shaker that produces a driving force of 100N at a frequency of 65 Hz is attached to the machine, causing it to vibrate. The mass of the shaker is negligible compared to the mass of the machine.
Use a phasor diagram to determine:
- The displacement amplitude X of the machine,
- The phase angle by which the driving force leads the displacement.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY