Industrial processes often require the damping of vibrations. Consider a workbench that uses four large ideal springs in place of traditional legs, with each spring supporting one corner of the workbench and exhibiting a force constant of k = 47500 N/m. This workbench is used when creating products that involve highly unstable chemicals. According to specifications, the acceleration of the manufacturing equipment must be held to less than 21.6 m/s² for the manufacturing process to proceed safely. The amplitudes of vibrations are expected to remain under 0.592 mm throughout. Given that the workbench and maufacturing equipment have a combined mass of m= 5.95 kg, find the maximum acceleration amax expected of the equipment and workbench. Ignore the mass of the springs. An engineer decides to damp the oscillations by applying one shock absorber to each spring. These shock absorbers apply a velocity-dependent drag force F = -bu that opposes the motion of the bench. For proper damping, the engineer decides that the motion of the bench should drop to half-amplitude within 0.479 s. In other words, within 0.479 s, the amplitude of motion should drop by a factor of one half. When purchasing shock absorbers, what damping coefficient b should the engineer specify to the industrial equipment supplier? Assume that the oscillations are underdamped.
Industrial processes often require the damping of vibrations. Consider a workbench that uses four large ideal springs in place of traditional legs, with each spring supporting one corner of the workbench and exhibiting a force constant of k = 47500 N/m. This workbench is used when creating products that involve highly unstable chemicals. According to specifications, the acceleration of the manufacturing equipment must be held to less than 21.6 m/s² for the manufacturing process to proceed safely. The amplitudes of vibrations are expected to remain under 0.592 mm throughout. Given that the workbench and maufacturing equipment have a combined mass of m= 5.95 kg, find the maximum acceleration amax expected of the equipment and workbench. Ignore the mass of the springs. An engineer decides to damp the oscillations by applying one shock absorber to each spring. These shock absorbers apply a velocity-dependent drag force F = -bu that opposes the motion of the bench. For proper damping, the engineer decides that the motion of the bench should drop to half-amplitude within 0.479 s. In other words, within 0.479 s, the amplitude of motion should drop by a factor of one half. When purchasing shock absorbers, what damping coefficient b should the engineer specify to the industrial equipment supplier? Assume that the oscillations are underdamped.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
I need b
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY