n incandescent lightbulb contains a tung-sten filament that reaches a temperature of about 3020 K, roughly half the surface temperature of the Sun. (a) Treating the filament as a blackbody, determine the frequency for which its radiation is a maximum. (b) Do you expect the lightbulb to radiate more energy in the visible or in the infrared part of the spectrum? Explain.
n incandescent lightbulb contains a tung-sten filament that reaches a temperature of about 3020 K, roughly half the surface temperature of the Sun. (a) Treating the filament as a blackbody, determine the frequency for which its radiation is a maximum. (b) Do you expect the lightbulb to radiate more energy in the visible or in the infrared part of the spectrum? Explain.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
100%
An incandescent lightbulb contains a tung-sten filament that reaches a temperature of about 3020 K, roughly half the surface temperature of the Sun. (a) Treating the filament as a blackbody, determine the frequency for which its radiation is a maximum. (b) Do you expect the lightbulb to radiate more energy in the visible or in the infrared part of the spectrum? Explain.
Expert Solution
Step 1
To find the wavelength corresponding to the maximum radiation from the tungsten filament in the incandescent lightbulb, we can use Wien's displacement law which relates the wavelength of maximum radiation to the temperature of the blackbody. The law is given by:
λ_max = b / T
where λ_max is the wavelength of maximum radiation, b is the Wien displacement constant (2.898 × 10^-3 m K), and T is the temperature of the blackbody in Kelvin.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON