n (employee's)9 where Zx Sx Calculation of correlation coeffcient x (hight) y (puls rate) (x- aver x) 68 90 72 85 65 88 70 100 62 105 75 98 78 70 64 65 68 72 Aver x Aver y 69.11111 85.8888889 = = x Aver y(mean) aver x Sx Σ(x - aver x)² n-1 m Σ (Zx Zy n - 1 = = (r) using method of cross products of the Z scores Zy (x- aver x)^2 (Y-aver y)^2 1.2345679 16.90123457 Zx.Zy -0.06146 (y- aver y) Zx -1.11111 4.11111111 -0.21242 0.2894 2.888889 -0.88888889 8.34567901 0.790123457 0.552286 -0.063 -0.03455 -4.11111 2.11111111 16.9012346 4.456790123 -0.78595 0.1486 -0.11678 0.888889 14.1111111 0.79012346 199.1234568 0.169934 0.9932 0.168778 -7.11111 19.1111111 50.5679012 365.2345679 -1.35947 1.3451 -1.82865 5.888889 12.1111111 34.6790123 146.6790123 1.125814 0.8524 0.959675 8.888889 -15.8888889 79.0123457 252.4567901 1.699341 -1.118 -1.90041 -5.11111 -20.8888889 26.1234568 436.345679 -0.97712 -1.47 1.436605 -1.11111 -13.8888889 1.2345679 192.9012346 -0.21242 -0.978 0.20765 [(x-aver x)^2 Σ(y-aver y)^2 Zx.Zy -1.16915 77.8395062 586.5061728 Sx Sy 5.230784942 14.20778347 Σy n Calculating the linear regression by the formula Calculate the coefficient m from S S b = Y - y x m and the equation will be Z, = y = = = (y- aver y) Σ(y-aver y)2 n-1 Aver x(mean) = = -0.39695 113 Ex n Y = b +mX .3228 r=( Zx.Zy)/(n-1)= Y-113.3228-0.39695X m= b= -0.14614 -0.39695 113.3228

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Engineering statistics Hello sir I want to understand this table how bees with an explanation of how the solution
n (employee's)9
where
N
Zx
Sx
Calculation of correlation coeffcient (r) using method of cross products of the Z scores
x (hight) y (puls rate) (x- aver x)
68
=
72
65
70
62
75
78
64
68
Aver x
Aver y
69.11111 85.8888889
=
r =
b
90
85
88
100
105
98
70
65
72
Aver y(mean)
m
x - aver x
Σ(x - aver x)²
n-1
=
$*
=
Σ (Zx • Zy
n - 1
=
Zy
Zx.Zy
-0.06146
-0.03455
-4.11111
0.888889
-7.11111
Zx
(x- aver x)^2 (Y-aver y)^2
(y-avery)
1.2345679
-1.11111 4.11111111
16.90123457 -0.21242 0.2894
2.888889 -0.88888889 8.34567901 0.790123457 0.552286 -0.063
2.11111111 16.9012346 4.456790123 -0.78595 0.1486 -0.11678
14.1111111 0.79012346 199.1234568 0.169934 0.9932 0.168778
19.1111111 50.5679012 365.2345679 -1.35947 1.3451 -1.82865
5.888889 12.1111111 34.6790123 146.6790123 1.125814 0.8524 0.959675
8.888889 -15.8888889 79.0123457
-1.90041
-5.11111 -20.8888889 26.1234568
-1.11111 -13.8888889 1.2345679
[(x-aver x)^2
77.8395062 586.5061728
Sy
14.20778347
252.4567901 1.699341 -1.118
436.345679 -0.97712 -1.47 1.436605
192.9012346 -0.21242 -0.978 0.20765
[(y-aver y)^2
Zx.Zy -1.16915
Sx
5.230784942
Calculating the linear regression by the formula
Calculate the coefficient m from
S
S
Σy
n
Y
-
y
mX
Zy
and the equation will be
y
=
=
(y-
Σ(y-aver y)2
n-1
aver y)
Sy
Aver x(mean)
Y
113
O 39695
Ex
n
= b +mX
3228
Y=113.3228-0.39695X
r=( Zx.Zy)/(n-1)= -0.14614
m= -0.39695
b=
113.3228
Transcribed Image Text:n (employee's)9 where N Zx Sx Calculation of correlation coeffcient (r) using method of cross products of the Z scores x (hight) y (puls rate) (x- aver x) 68 = 72 65 70 62 75 78 64 68 Aver x Aver y 69.11111 85.8888889 = r = b 90 85 88 100 105 98 70 65 72 Aver y(mean) m x - aver x Σ(x - aver x)² n-1 = $* = Σ (Zx • Zy n - 1 = Zy Zx.Zy -0.06146 -0.03455 -4.11111 0.888889 -7.11111 Zx (x- aver x)^2 (Y-aver y)^2 (y-avery) 1.2345679 -1.11111 4.11111111 16.90123457 -0.21242 0.2894 2.888889 -0.88888889 8.34567901 0.790123457 0.552286 -0.063 2.11111111 16.9012346 4.456790123 -0.78595 0.1486 -0.11678 14.1111111 0.79012346 199.1234568 0.169934 0.9932 0.168778 19.1111111 50.5679012 365.2345679 -1.35947 1.3451 -1.82865 5.888889 12.1111111 34.6790123 146.6790123 1.125814 0.8524 0.959675 8.888889 -15.8888889 79.0123457 -1.90041 -5.11111 -20.8888889 26.1234568 -1.11111 -13.8888889 1.2345679 [(x-aver x)^2 77.8395062 586.5061728 Sy 14.20778347 252.4567901 1.699341 -1.118 436.345679 -0.97712 -1.47 1.436605 192.9012346 -0.21242 -0.978 0.20765 [(y-aver y)^2 Zx.Zy -1.16915 Sx 5.230784942 Calculating the linear regression by the formula Calculate the coefficient m from S S Σy n Y - y mX Zy and the equation will be y = = (y- Σ(y-aver y)2 n-1 aver y) Sy Aver x(mean) Y 113 O 39695 Ex n = b +mX 3228 Y=113.3228-0.39695X r=( Zx.Zy)/(n-1)= -0.14614 m= -0.39695 b= 113.3228
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman