Multiple choice A ball is thrown directly upward and experiences no air resistance. Which one of the following statements about its motion is correct? O The acceleration of the ball is upward while it is traveling up and downward while it is traveling down. O The acceleration of the ball is downward while it is traveling up and upward while it is traveling down. The acceleration of the ball is downward while it is traveling up and downward while it is traveling down but is zero at the highest point when the ball stops. O The acceleration is downward during the entire time the ball is in the air.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.


Trending now
This is a popular solution!
Step by step
Solved in 3 steps









