moving coil galvanometer has the following characteristics – Number of turns of coil = 50; Area of coil = 70 mm2; Resistance of coil = 30 Ω; Flux density of radial field = 0.1 T; Torsional constant of suspension wire = 7 × 10-8 N m/rad. Calculate the current and voltage sensitivity. a) 10 div/mA, 0.166 div/mV b) 15 div/mA, 0.115 div/mV c) 5 div/mA, 0.167 div/mV d) 20 div/mA, 0.100 div/mV
moving coil galvanometer has the following characteristics – Number of turns of coil = 50; Area of coil = 70 mm2; Resistance of coil = 30 Ω; Flux density of radial field = 0.1 T; Torsional constant of suspension wire = 7 × 10-8 N m/rad. Calculate the current and voltage sensitivity. a) 10 div/mA, 0.166 div/mV b) 15 div/mA, 0.115 div/mV c) 5 div/mA, 0.167 div/mV d) 20 div/mA, 0.100 div/mV
Related questions
Question
moving coil galvanometer has the following characteristics – Number of turns of coil = 50; Area of coil = 70 mm2; Resistance of coil = 30 Ω; Flux density of radial field = 0.1 T; Torsional constant of suspension wire = 7 × 10-8 N m/rad. Calculate the current and voltage sensitivity.
a) 10 div/mA, 0.166 div/mV
b) 15 div/mA, 0.115 div/mV
c) 5 div/mA, 0.167 div/mV
d) 20 div/mA, 0.100 div/mV
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
