Morning glories close their petals at night and reopen each morning. The motion of one petal can be represented as mass attached to a simple spring. At 12am the petals are most condensed. At 6am and 6pm they are halfway opened. At 12pm they are fully expanded. The stiffness of the petal (its K equivalent) is 1.5x10^-11N/m and each petal has a Mass of 0.002kg A. What is the period of a petal's motion? B. For a petal 6cm longer when fully expanded compared to when it is most condensed, what is its total mechanical energy at 3pm? (Assume t=0 at 12:00am) C. Suppose somebody forgot to add fertilizer and the amplitudes for the oscillation of the petals are decreasing over time. The motion of the petals are now represented by equation: ma + cv + kx=0. The damping factor c=5x10^-8. Give an equation that represents the petal's displacement as a function of time.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Topic Video
Question
100%

Morning glories close their petals at night and reopen each morning. The motion of one petal can be represented as mass attached to a simple spring. At 12am the petals are most condensed. At 6am and 6pm they are halfway opened. At 12pm they are fully expanded. The stiffness of the petal (its K equivalent) is 1.5x10^-11N/m and each petal has a Mass of 0.002kg

A. What is the period of a petal's motion?

B. For a petal 6cm longer when fully expanded compared to when it is most condensed, what is its total mechanical energy at 3pm? (Assume t=0 at 12:00am)

C. Suppose somebody forgot to add fertilizer and the amplitudes for the oscillation of the petals are decreasing over time. The motion of the petals are now represented by equation: ma + cv + kx=0. The damping factor c=5x10^-8. Give an equation that represents the petal's displacement as a function of time. 

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Fluid Statics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY