Month and Year  U.S. Gasoline Prices (in cents) OPEC Spot Price:           $ per barrel U.S. Finished Motor Gasoline Production  (1000 Barrels per Day) U.S. Natural Gas Wellhead Price       ($/1000 Cu.Ft.) Jan-97 128.3 21.52 7315 3.4 Feb-97 127.6 18.57 7330 2.49 Mar-97 125.1 18.63 7079 1.79 Apr-97 124.4 16.64 7737 1.81 May-97 124.5 18.31 7998 2 Jun-97 124.2 16.69 8008 2.08 Jul-97 122 17.16 7959 2 Aug-97 126.8 16.79 8207 2.08

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Month and Year  U.S. Gasoline Prices (in cents) OPEC Spot Price:           $ per barrel U.S. Finished Motor Gasoline Production  (1000 Barrels per Day) U.S. Natural Gas Wellhead Price       ($/1000 Cu.Ft.)
Jan-97 128.3 21.52 7315 3.4
Feb-97 127.6 18.57 7330 2.49
Mar-97 125.1 18.63 7079 1.79
Apr-97 124.4 16.64 7737 1.81
May-97 124.5 18.31 7998 2
Jun-97 124.2 16.69 8008 2.08
Jul-97 122 17.16 7959 2
Aug-97 126.8 16.79 8207 2.08
Sep-97 127.6 17.34 8134 2.33
Oct-97 124.2 18.18 7881 2.68
Nov-97 121.6 17.57 7627 2.92
Dec-97 117.7 15.65 8331 2.28
Jan-98 113.2 13.48 7545 1.96
Feb-98 109.6 11.66 7508 1.96
Mar-98 106.4 11.98 7975 2.06
Apr-98 107.7 11.78 8083 2.16
May-98 110.5 11.92 8216 2.04
Jun-98 110.3 10.73 8368 1.91
Jul-98 109.4 11.55 8272 2.09
Aug-98 106.5 11.54 8403 1.82
Sep-98 104.9 12.56 8026 1.7
Oct-98 105.9 12.45 7947 1.86
Nov-98 103.6 11.09 8181 1.94
Dec-98 98.7 9.56 8306 1.95
Jan-99 98 10.46 7792 1.85
Feb-99 96.2 10.07 7866 1.77
Mar-99 102.2 13.24 7676 1.7
Apr-99 117.1 15.73 8327 1.9
May-99 117.1 14.89 8401 2.17
Jun-99 115.4 15.68 8165 2.14
Jul-99 119.7 18.74 8156 2.2
Aug-99 126 19.95 8384 2.51
Sep-99 129.5 22.33 8493 2.62
Oct-99 128.5 21.6 8154 2.52
Nov-99 129.2 24.51 8254 2.68
Dec-99 131.3 24.32 8388 2.24
Jan-00 132.9 25.54 7836 2.6
Feb-00 141.5 25.94 7830 2.73
Mar-00 155.6 24.73 8256 2.66
Apr-00 150.6 23.63 8214 2.86
May-00 152.6 27.67 8434 3.04
Jun-00 166.6 29.11 8325 3.77
Jul-00 159.1 25.22 8556 3.84
Aug-00 150.6 28.4 8295 3.73
Sep-00 158.8 28.96 8424 4.26
Oct-00 157.1 30.66 8249 4.58
Nov-00 155.7 30.28 8183 4.4
Dec-00 148.3 20.89 8505 5.77
Jan-01 148.7 24.63 7789 6.82
Feb-01 149 24.78 7974 5.08
Mar-01 145 23.38 7955 4.37
Apr-01 159.1 25.02 8476 4.52
May-01 173.8 26.87 8567 4.36
Jun-01 165.8 24.34 8997 3.79
Jul-01 146.6 23.42 8266 3.35
Aug-01 146.1 24.89 8050 3.33
Sep-01 155.7 21.47 8455 2.93
Oct-01 135.7 19.21 8422 2.78
Nov-01 121.2 17.29 8535 3.41
Dec-01 112.7 18.57 8292 3.42
Jan-02 114.8 17.56 8149 2.5
Feb-02 115.5 18.74 7950 2.19
Mar-02 128.9 23.38 8371 2.4
Apr-02 143.9 24.18 8497 2.94
May-02 143.4 22.99 8440 2.94
Jun-02 142.4 23.68 8528 2.96
Jul-02 143.8 24.2 8550 2.92
Aug-02 143.8 25.83 8382 2.76
Sep-02 144.1 27.55 8461 2.97
Oct-02 148.6 25.69 8515 3.24
Nov-02 146.1 23.32 8647 3.59
Dec-02 142.9 28.5 8796 3.96
Jan-03 150 29.18 7521 4.43
Feb-03 165.5 31.43 7978 5.05
Mar-03 173.4 24.21 8004 6.96
Apr-03 163.3 23.55 8430 4.47
May-03 153.9 24.2 8656 4.77
Jun-03 153.3 25.04 8657 5.41
Jul-03 155.4 26.64 8524 5.08
Aug-03 166.1 28.26 8846 4.46
Sep-03 172.1 24.88 8749 4.59
Oct-03 160.6 27.14 8526 4.32
Nov-03 155.5 27.6 8702 4.26
Dec-03 152.2 28.32 8667 4.76
Jan-04 161.4 28.84 8148 5.21
Feb-04 169 29.21 8456 5.02
Mar-04 177.8 31.28 8530 5.12
Apr-04 183.9 31.91 8793 5.03
May-04 202.3 35.28 8817 5.4
Jun-04 201.3 33.05 8798 5.82
Jul-04 195.4 36.6 8832 5.62
Aug-04 192 39.67 8879 5.52
Sep-04 191.2 39.85 8187 5.06
Oct-04 204.2 44.72 8779 5.43
Nov-04 202.3 38.26 8857 6.21
Dec-04 188.7 33.29 9013 6.01
Jan-05 187.5 41.89 8465 5.8
Feb-05 195.3 44.04 8485 5.73
Mar-05 212 49.6 8198 5.95
Apr-05 228.5 48.58 8752 6.57
May-05 220.5 44.25 9128 6.25
Jun-05 219.8 53.08 9136 6.09
Jul-05 233.3 53.59 8661 6.71
Aug-05 252.9 59.95 8799 6.48
Sep-05 295.1 58.83 7507 8.95
Oct-05 276.5 53.45 8734 10.33
Nov-05 230.3 50.29 8966 9.89
Dec-05 222.9 52.22 8937 9.08
Jan-06 236 60.9 8664 8.02
Feb-06 232.6 55.76 8350 6.86
Mar-06 246.8 59.91 8134 6.44
Apr-06 278.7 67.59 8595 6.38
May-06 295.3 64.12 9208 6.24
Jun-06 293 65.7 9207 5.78
Jul-06 302.5 68.71 9037 5.92
Aug-06 299.9 67.48 9141 6.56
Sep-06 260.6 56.07 8902 6.06
Oct-06 229.3 55.45 8763 5.09
Nov-06 227.5 54.73 8856 6.72
Dec-06 235.9 57.33 9326 6.76
Jan-07 228.9 50.17 9087 5.92
Feb-07 232.3 54.4 8668 6.66
Mar-07 260.9 61.7 8773 6.56
Apr-07 289.1 64.35 8777 6.84
May-07 318.7 67.39 9258 6.98
Jun-07 310.2 68.02 9402 6.86
Jul-07 301.1 73.74 9429 6.19
Aug-07 283.4 68.83 9157 5.9
Sep-07 284.9 76.52 8698 5.61
Oct-07 285.3 81.62 8917 6.25
Nov-07 312.8 90.74 9092 6.37
Dec-07 307 90.99 9070 6.53
Jan-08 309.5 85.4 8887 6.99
Feb-08 307.8 95.4 9042 7.55
Mar-08 329.3 99.45 8608 8.29
Apr-08 350.7 110.96 8964 8.94
May-08 381.5 126.43 9113 9.81
QUESTION 6
Use the 12-Year Gasoline Time series database on "Excel Databases.xls". Look at the time-series plot from January 1997 to May 2008 to predict the US Gasoline Price
(cents). Then develop a linear model and a quadratic model to predict US Gasoline Price (cents) over this time period. Which model appears to be better at predicting US
Gasoline Price and why?
O The quadratic model because the time series plot showed an upward curvilinear trend, and the r-squared value is higher.
O The quadratic model because the time series plot showed an upward curvilinear trend, and the estimates of the regression coefficients are larger.
O The linear model because the time series plot showed an upward linear trend, and the r-squared value is higher.
O The linear model because the time series plot showed an upward linear trend, and the estimate of the slope is larger.
Transcribed Image Text:QUESTION 6 Use the 12-Year Gasoline Time series database on "Excel Databases.xls". Look at the time-series plot from January 1997 to May 2008 to predict the US Gasoline Price (cents). Then develop a linear model and a quadratic model to predict US Gasoline Price (cents) over this time period. Which model appears to be better at predicting US Gasoline Price and why? O The quadratic model because the time series plot showed an upward curvilinear trend, and the r-squared value is higher. O The quadratic model because the time series plot showed an upward curvilinear trend, and the estimates of the regression coefficients are larger. O The linear model because the time series plot showed an upward linear trend, and the r-squared value is higher. O The linear model because the time series plot showed an upward linear trend, and the estimate of the slope is larger.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Research Ethics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman