Mia is a researcher in a medical lab and to get a correct measurement on a specimen, all three of these things have to go right: the specimen has to be uncontaminated; the container it is stored in has to be uncontaminated; and the measuring device has to be uncontaminated. Suppose there is a 2% chance the specimen IS contaminated; a 3% chance the container IS contaminated; and a 1% chance the measuring device IS contaminated. If these three things are independent of each other, what is the probability that Mia gets a correct measurement on her specimen?
Compound Probability
Compound probability can be defined as the probability of the two events which are independent. It can be defined as the multiplication of the probability of two events that are not dependent.
Tree diagram
Probability theory is a branch of mathematics that deals with the subject of probability. Although there are many different concepts of probability, probability theory expresses the definition mathematically through a series of axioms. Usually, these axioms express probability in terms of a probability space, which assigns a measure with values ranging from 0 to 1 to a set of outcomes known as the sample space. An event is a subset of these outcomes that is described.
Conditional Probability
By definition, the term probability is expressed as a part of mathematics where the chance of an event that may either occur or not is evaluated and expressed in numerical terms. The range of the value within which probability can be expressed is between 0 and 1. The higher the chance of an event occurring, the closer is its value to be 1. If the probability of an event is 1, it means that the event will happen under all considered circumstances. Similarly, if the probability is exactly 0, then no matter the situation, the event will never occur.
Mia is a researcher in a medical lab and to get a correct measurement on a specimen, all three of these things have to go right: the specimen has to be uncontaminated; the container it is stored in has to be uncontaminated; and the measuring device has to be uncontaminated. Suppose there is a 2% chance the specimen IS contaminated; a 3% chance the container IS contaminated; and a 1% chance the measuring device IS contaminated. If these three things are independent of each other, what is the
Step by step
Solved in 2 steps with 2 images