Methane is burned with 25% excess air in a continuous adiabatic reactor. The methane enters the reactor at 25°C and 1.10 atm at a rate of 550 L/s, and the entering air is at 150°C and 1.1 atm. Combustion in the reactor is complete, and the reactor effluent gas emerges at 1.05 atm.(a) Calculate the temperature and the degrees of superheat of the reactor effluent. (Consider water to be the only condensable species in the effluent.)(b) Suppose only 15% excess air is supplied. Without doing any additional calculations, state how the temperature and degrees of superheat of the reactor effluent would be affected [increase, decrease, remain the same, cannot tell without more information] and explain your reasoning. What risk is involved in lowering the percent excess air?
Methane is burned with 25% excess air in a continuous adiabatic reactor. The methane enters the reactor at 25°C and 1.10 atm at a rate of 550 L/s, and the entering air is at 150°C and 1.1 atm. Combustion in the reactor is complete, and the reactor effluent gas emerges at 1.05 atm.
(a) Calculate the temperature and the degrees of superheat of the reactor effluent. (Consider water to be the only condensable species in the effluent.)
(b) Suppose only 15% excess air is supplied. Without doing any additional calculations, state how the temperature and degrees of superheat of the reactor effluent would be affected [increase, decrease, remain the same, cannot tell without more information] and explain your reasoning. What risk is involved in lowering the percent excess air?

Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images









