Many varieties of lasers emit light in the form of pulses rather than a steady beam. A tellurium–sapphire laser can produce light at a wavelength of 800 nm in ultrashort pulses that last only 4.00 x 10-15 s (4.00 femtoseconds, or 4.00 fs). The energy in a single pulse produced by one such laser is 2.00 µJ = 2.00 x 10-6 J, and the pulses propagate in the positive x-direction. Find (a) the frequency of the light; (b) the energy and minimum energy uncertainty of a single photon in the pulse; (c) the minimum frequency uncertainty of the light in the pulse; (d) the spatial length of the pulse, in meters and as a multiple of the wavelength; (e) the momentum and minimum momentum uncertainty of a single photon in the pulse; and (f) the approximate number of photons in the pulse

icon
Related questions
Question

Many varieties of lasers emit light in the form of pulses rather than a steady beam. A tellurium–sapphire laser can produce light at a wavelength of 800 nm in ultrashort pulses that last only 4.00 x 10-15 s (4.00 femtoseconds, or 4.00 fs). The energy in a single pulse produced by one such laser is 2.00 µJ = 2.00 x 10-6 J, and the pulses propagate in the positive x-direction. Find (a) the frequency of the light; (b) the energy and minimum energy uncertainty of a single photon in the pulse; (c) the minimum frequency uncertainty of the light in the pulse; (d) the spatial length of the pulse, in meters and as a multiple of the wavelength; (e) the momentum and minimum momentum uncertainty of a single photon in the pulse; and (f) the approximate number of photons in the pulse

Expert Solution
steps

Step by step

Solved in 4 steps with 7 images

Blurred answer