Make a change of variable, x = Py, that transforms the quadratic form 3x, + 14x, x, + 3x, into a quadratic form with no cross-product term. Give P and the new quadratic form. Which of the following matrices can be used as P in x = Py to produce a quadratic form with no cross product term? OB. Oc. VD. 1 1 V2 V2 1 1 1 1 1 V2 12 The corresponding quadratic form is y' Dy = ||| (Simplify your answer.) |- |-

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**
Make a change of variable, \( x = P y \), that transforms the quadratic form \( 3x_1^2 + 14x_1x_2 + 3x_2^2 \) into a quadratic form with no cross-product term. Give \( P \) and the new quadratic form.

**Choose the Correct Matrix:**
Which of the following matrices can be used as \( P \) in \( x = P y \) to produce a quadratic form with no cross-product term?

**Options:**

- **Option A:**
  \[
  \begin{bmatrix}
  \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
  \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
  \end{bmatrix}
  \]

- **Option B:**
  \[
  \begin{bmatrix}
  \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
  \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
  \end{bmatrix}
  \]

- **Option C:**
  \[
  \begin{bmatrix}
  -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
  \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
  \end{bmatrix}
  \]

- **Option D (Correct Answer):**
  \[
  \begin{bmatrix}
  \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
  -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
  \end{bmatrix}
  \]

**Solution:**
The corresponding quadratic form is \( y^T D y = \boxed{11(y_1^2 + y_2^2)} \). (Simplify your answer.)
Transcribed Image Text:**Problem Statement:** Make a change of variable, \( x = P y \), that transforms the quadratic form \( 3x_1^2 + 14x_1x_2 + 3x_2^2 \) into a quadratic form with no cross-product term. Give \( P \) and the new quadratic form. **Choose the Correct Matrix:** Which of the following matrices can be used as \( P \) in \( x = P y \) to produce a quadratic form with no cross-product term? **Options:** - **Option A:** \[ \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \] - **Option B:** \[ \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \] - **Option C:** \[ \begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \] - **Option D (Correct Answer):** \[ \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \] **Solution:** The corresponding quadratic form is \( y^T D y = \boxed{11(y_1^2 + y_2^2)} \). (Simplify your answer.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,