Magnetic Field Analysis of a Helical Coil In this lab you will analyse the inductive coil structure shown in Figure 1. It comprises a solid round copper wire of radius a = 0.8mm, wound into a cylindrical spiral having N = 20 turns, major radius R = 10mm and an axial pitch p = 2mm. The coil is excited by a dc current of 1A. R P 1 (a) Analytic Calculations Figure 1: Helical Air-cored Coil Using the expressions developed in the class, estimate the magnetic flux density B at the centre of the coil. Recall from EN1216 that for a long solenoid, the flux density is given by: HONI B l As we saw in the class (see section 4) a modified expression can also be derived that eliminates the need for the 'long' solenoid assumption: R α1 Р â B = HONI 2l (cosa₂-cosα1) 1 Compare the results obtained using equations (1) and (2) and state which solution you would expect to give the best approximation to the real coil behaviour.

Delmar's Standard Textbook Of Electricity
7th Edition
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Stephen L. Herman
Chapter32: Three-phase Motors
Section: Chapter Questions
Problem 8RQ
icon
Related questions
Question
Magnetic Field Analysis of a Helical Coil
In this lab you will analyse the inductive coil structure shown in Figure 1. It comprises a solid
round copper wire of radius a = 0.8mm, wound into a cylindrical spiral having N = 20 turns, major
radius R = 10mm and an axial pitch p = 2mm. The coil is excited by a dc current of 1A.
R
P
1
(a) Analytic Calculations
Figure 1: Helical Air-cored Coil
Using the expressions developed in the class, estimate the magnetic flux density B at the centre of
the coil. Recall from EN1216 that for a long solenoid, the flux density is given by:
HONI
B
l
As we saw in the class (see section 4) a modified expression can also be derived that eliminates
the need for the 'long' solenoid assumption:
R
α1
Р
â
B =
HONI
2l
(cosa₂-cosα1)
1
Compare the results obtained using equations (1) and (2) and state which solution you would
expect to give the best approximation to the real coil behaviour.
Transcribed Image Text:Magnetic Field Analysis of a Helical Coil In this lab you will analyse the inductive coil structure shown in Figure 1. It comprises a solid round copper wire of radius a = 0.8mm, wound into a cylindrical spiral having N = 20 turns, major radius R = 10mm and an axial pitch p = 2mm. The coil is excited by a dc current of 1A. R P 1 (a) Analytic Calculations Figure 1: Helical Air-cored Coil Using the expressions developed in the class, estimate the magnetic flux density B at the centre of the coil. Recall from EN1216 that for a long solenoid, the flux density is given by: HONI B l As we saw in the class (see section 4) a modified expression can also be derived that eliminates the need for the 'long' solenoid assumption: R α1 Р â B = HONI 2l (cosa₂-cosα1) 1 Compare the results obtained using equations (1) and (2) and state which solution you would expect to give the best approximation to the real coil behaviour.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning