MacBook Air Kiln 1: Kiln 2: Kiln 3 ation 2. The Brighton Brick Company (BBC) makes two different types of bricks, cream and red, u kilns. The company wishes to maximise the profit resulting from the production of those b Let x be the number of batches of cream bricks made per day and y be the number of batc made per day. The problem can be formulated as the following linear program: Maximise P = 50x + 20y subject to: 20x+10y≤ 300 10x ≤ 120 20y≤ 480 x ≥0&y≥0 The objective function P represents daily profit, measured in dollars and the constraints correspond daily use of the kilns, measured in minutes per day. a) How many minutes per day is kiln 2 available for making bricks? b) How many minutes of kiln 3 time does each batch of red bricks require? www many minutes of kin 3 tim c) What is the profit per batch of cream bricks? 11 d) Draw a graph and shade in the feasible region represented by the constraints for using the kilns.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
MacBook Air
2. The Brighton Brick Company (BBC) makes two different types of bricks, cream and red, using three differe
kilns. The company wishes to maximise the profit resulting from the production of those bricks.
Let x be the number of batches of cream bricks made per day and y be the number of batches of red bricks
made per day.
The problem can be formulated as the following linear program:
Maximise P = 50x + 20y subject to:
Kiln 1:
Kiln 2:
Kiln 3
b) How
20x+10y≤ 300
10x ≤ 120
20y≤ 480
x ≥0&y≥0
Lummation1
The objective function P represents daily profit, measured in dollars and the constraints corresponding to limits on
daily use of the kilns, measured in minutes per day.
a) How many minutes per day is kiln 2 available for making bricks?
many minutes of kiln 3 time does each batch of red bricks require?
c) What is the profit per batch of cream bricks?
borger st
d) Draw a graph and shade in the feasible region represented by the constraints for using the kilns.
[1 mark]
[1 mark]
[1 mark]
[4 marks]
Transcribed Image Text:MacBook Air 2. The Brighton Brick Company (BBC) makes two different types of bricks, cream and red, using three differe kilns. The company wishes to maximise the profit resulting from the production of those bricks. Let x be the number of batches of cream bricks made per day and y be the number of batches of red bricks made per day. The problem can be formulated as the following linear program: Maximise P = 50x + 20y subject to: Kiln 1: Kiln 2: Kiln 3 b) How 20x+10y≤ 300 10x ≤ 120 20y≤ 480 x ≥0&y≥0 Lummation1 The objective function P represents daily profit, measured in dollars and the constraints corresponding to limits on daily use of the kilns, measured in minutes per day. a) How many minutes per day is kiln 2 available for making bricks? many minutes of kiln 3 time does each batch of red bricks require? c) What is the profit per batch of cream bricks? borger st d) Draw a graph and shade in the feasible region represented by the constraints for using the kilns. [1 mark] [1 mark] [1 mark] [4 marks]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,