MA Let r [-1. 1] and F(x) = f, f(t)dt. where the function f is defined by 1. if x > 0. f(x) = { 0. if r ≤9. 1. Show that F is not differentiable at x = 0.
MA Let r [-1. 1] and F(x) = f, f(t)dt. where the function f is defined by 1. if x > 0. f(x) = { 0. if r ≤9. 1. Show that F is not differentiable at x = 0.
Chapter2: Functions And Their Graphs
Section2.3: Analyzing Graphs Of Functions
Problem 6ECP
Related questions
Question
![Let re [-1. 1] and F(x) = f, f(t)dt. where the function f is defined by
1. if x > 0.
0. if r ≤ 0.
f(x) =
1. Show that F is not differentiable at x = 0.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb960331d-b9de-4e83-88c2-ccb399997c3d%2Fab311cf5-1ba8-448b-8ae0-2972ecedf99b%2Fcwh40ic_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let re [-1. 1] and F(x) = f, f(t)dt. where the function f is defined by
1. if x > 0.
0. if r ≤ 0.
f(x) =
1. Show that F is not differentiable at x = 0.
![2. Explain why the above result does not contradict the Fundamental Theorem of
calculus (you must first state clearly this Theorem).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb960331d-b9de-4e83-88c2-ccb399997c3d%2Fab311cf5-1ba8-448b-8ae0-2972ecedf99b%2Fwba01cn_processed.jpeg&w=3840&q=75)
Transcribed Image Text:2. Explain why the above result does not contradict the Fundamental Theorem of
calculus (you must first state clearly this Theorem).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![College Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781337282291/9781337282291_smallCoverImage.gif)
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![College Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652231/9781305652231_smallCoverImage.gif)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning
![Algebra for College Students](https://www.bartleby.com/isbn_cover_images/9781285195780/9781285195780_smallCoverImage.gif)
Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning