1) Consider the function f(x): = 5x² - 4x +7 Find a number c in the domain such that f (c) = defined on the interval [1,4]. f(x) dx . Round your answer to 2 decimal places.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
1) Consider the function \( f(x) = 5x^2 - 4x + 7 \) defined on the interval \([1,4]\).

Find a number \( c \) in the domain such that 

\[
f(c) = \frac{1}{3} \int_{1}^{4} f(x) \, dx
\]

Round your answer to **2 decimal places**.
Transcribed Image Text:1) Consider the function \( f(x) = 5x^2 - 4x + 7 \) defined on the interval \([1,4]\). Find a number \( c \) in the domain such that \[ f(c) = \frac{1}{3} \int_{1}^{4} f(x) \, dx \] Round your answer to **2 decimal places**.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning