List the eigenvalues of the matrix A₁, A₂= -1,1 Find an eigenvector ₁ for A₁ = -1: 1 3 Find an eigenvector ₂ for A₂ = 1 : 1 1 23 The fundamental matrix X(t) is ▼ 3 ▼ Using the eigenvectors ₁ and 2 that you found in parts 2 and 3, find the fundamental matrix solution = X(t)e to the system Par Part Part 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Linear Algebra: Eigenvalues and Eigenvectors**

**1. List the Eigenvalues of the Matrix**

Consider the matrix:

\[
\begin{bmatrix}
2 & -1 \\
3 & -2
\end{bmatrix}
\]

The eigenvalues, denoted as \( \lambda_1, \lambda_2 \), are:

\[
-1, 1
\]

---

**2. Find an Eigenvector \( \mathbf{v}_1 \) for \( \lambda_1 = -1 \):**

The eigenvector \( \mathbf{v}_1 \) associated with the eigenvalue \( \lambda_1 = -1 \) is:

\[
\begin{bmatrix}
1 \\
3
\end{bmatrix}
\]

---

**3. Find an Eigenvector \( \mathbf{v}_2 \) for \( \lambda_2 = 1 \):**

The eigenvector \( \mathbf{v}_2 \) associated with the eigenvalue \( \lambda_2 = 1 \) is:

\[
\begin{bmatrix}
1 \\
1
\end{bmatrix}
\]

---

**4. Using the Eigenvectors \( \mathbf{v}_1 \) and \( \mathbf{v}_2 \), Find the Fundamental Matrix Solution**

Given the eigenvectors \(\mathbf{v}_1\) and \(\mathbf{v}_2\) found above, the task is to find the fundamental matrix solution for the system:

\[
\mathbf{\dot{x}} = \begin{bmatrix}
2 & -1 \\
3 & -2
\end{bmatrix} \mathbf{x}
\]

The fundamental matrix \( X(t) \) is calculated using these eigenvectors. 

Note: The boxes in the original image should be filled with the appropriate fundamental solutions.
Transcribed Image Text:**Linear Algebra: Eigenvalues and Eigenvectors** **1. List the Eigenvalues of the Matrix** Consider the matrix: \[ \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} \] The eigenvalues, denoted as \( \lambda_1, \lambda_2 \), are: \[ -1, 1 \] --- **2. Find an Eigenvector \( \mathbf{v}_1 \) for \( \lambda_1 = -1 \):** The eigenvector \( \mathbf{v}_1 \) associated with the eigenvalue \( \lambda_1 = -1 \) is: \[ \begin{bmatrix} 1 \\ 3 \end{bmatrix} \] --- **3. Find an Eigenvector \( \mathbf{v}_2 \) for \( \lambda_2 = 1 \):** The eigenvector \( \mathbf{v}_2 \) associated with the eigenvalue \( \lambda_2 = 1 \) is: \[ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] --- **4. Using the Eigenvectors \( \mathbf{v}_1 \) and \( \mathbf{v}_2 \), Find the Fundamental Matrix Solution** Given the eigenvectors \(\mathbf{v}_1\) and \(\mathbf{v}_2\) found above, the task is to find the fundamental matrix solution for the system: \[ \mathbf{\dot{x}} = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix} \mathbf{x} \] The fundamental matrix \( X(t) \) is calculated using these eigenvectors. Note: The boxes in the original image should be filled with the appropriate fundamental solutions.
Expert Solution
steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,