Liquid water flows in a thin-walled circular tube at a mass flow rate of 11 g/s. The water enters the tube at 60°C, where it is heated at a rate of 3.8 kW. The tube is circular with a length of 2.5 m and an inner diameter of 25 mm. The tube surface is maintained at a constant temperature. At the tube exit, a hydrogenated nitrile rubber (HNBR) o-ring is attached to the tube’s outer surface. The maximum temperature permitted for the o-ring is 150°C. Is the HNBR o-ring suitable for this operation? The fluid properties at 100°C are cp = 4217 J/kg∙K, k = 0.679 W/m∙K, μ = 0.282 × 10−3 kg/m∙s, and Pr = 1.75. Is this a reasonable temperature at which to evaluate the fluid properties? The surface temperature of the tube is?
Liquid water flows in a thin-walled circular tube at a mass flow rate of 11 g/s. The water enters the tube at 60°C, where it is heated at a rate of 3.8 kW. The tube is circular with a length of 2.5 m and an inner diameter of 25 mm. The tube surface is maintained at a constant temperature. At the tube exit, a hydrogenated nitrile rubber (HNBR) o-ring is attached to the tube’s outer surface. The maximum temperature permitted for the o-ring is 150°C. Is the HNBR o-ring suitable for this operation? The fluid properties at 100°C are cp = 4217 J/kg∙K, k = 0.679 W/m∙K, μ = 0.282 × 10−3 kg/m∙s, and Pr = 1.75. Is this a reasonable temperature at which to evaluate the fluid properties?
The surface temperature of the tube is?
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)