Linearity in the function: For any h>0, s,ter, any f,g=C(R,R), any YER ¹+1, any wer n+1 and any XER, we have D[sf + tg, x; h, y, w] = sD[f, x; h, y, w] + tD[g, x; h, y, w]. Product rule: For any h>0, any f,geC∞ (R,R), any YER' n+1 n+1 any WER and any XER, we have D[fg, x; h, y, w] = D[ƒ, x; h, y, w]g(x) + f(x)D[g, x; h, y, w], where fg denotes the product of the functions f and g. Constant functions: For any h>0, any CER, any YER ¹+1, any WER n+1 and any XER, we have D[c, x; h, y, w] = 0. n+1 Linearity in the weights: For any h>0, any s,ter, any feC (R,R), any YER' D[f, x; h, y, sv + tw] = 1, any v,WER n+1 and any XER, we have sD[f, x; h, y, v] + tD[f, x; h, y, w].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Which of the following statements are correct?

 

n+1
', any WER and any XER, we have
a. Linearity in the function: For any h>0, s,ter, any f,geC (R,R), any YER +1,
D[sf + tg, x; h, y, w] = sD[f, x; h, y, w] + tD[g, x; h, y, w].
b. Product rule: For any h>0, any f,geC (R,R), any YER "+1, any WER n+1 and any XER, we have
D[fg, x; h, y, w] = D[f, x; h, y, w]g(x) + f(x)D[g, x; h, y, w],
where fg denotes the product of the functions f and g.
O c. Constant functions: For any h>0, any CER, any YER
n+1
n+1
', any WER
and any XER, we have
D[c, x; h, y, w] = 0.
O d. Linearity in the weights: For any h>0, any s,ter, any fεC∞(R,R), any YER 1, any v,WER n+1 and any XER, we have
n+1
D[f, x; h, y, sv + tw] = sD[ƒ, x; h, y, v] + tD[f, x; h, y, w].
Transcribed Image Text:n+1 ', any WER and any XER, we have a. Linearity in the function: For any h>0, s,ter, any f,geC (R,R), any YER +1, D[sf + tg, x; h, y, w] = sD[f, x; h, y, w] + tD[g, x; h, y, w]. b. Product rule: For any h>0, any f,geC (R,R), any YER "+1, any WER n+1 and any XER, we have D[fg, x; h, y, w] = D[f, x; h, y, w]g(x) + f(x)D[g, x; h, y, w], where fg denotes the product of the functions f and g. O c. Constant functions: For any h>0, any CER, any YER n+1 n+1 ', any WER and any XER, we have D[c, x; h, y, w] = 0. O d. Linearity in the weights: For any h>0, any s,ter, any fεC∞(R,R), any YER 1, any v,WER n+1 and any XER, we have n+1 D[f, x; h, y, sv + tw] = sD[ƒ, x; h, y, v] + tD[f, x; h, y, w].
Consider the general numerical differentiation formula
with h>0 and certain constants
D[f, x; h, y, w]
'=
and
Σwk f(x + ykh)
k=0
y = (yo, ..., Yn) € R¹+¹
w := (wo, ..., w₁) € R¹+¹.
The differentiation formulas in Example 6.2 are particular examples of this general formula. We wish to approximate
f'(x) ≈ D[f, x; h, y, w].
Transcribed Image Text:Consider the general numerical differentiation formula with h>0 and certain constants D[f, x; h, y, w] '= and Σwk f(x + ykh) k=0 y = (yo, ..., Yn) € R¹+¹ w := (wo, ..., w₁) € R¹+¹. The differentiation formulas in Example 6.2 are particular examples of this general formula. We wish to approximate f'(x) ≈ D[f, x; h, y, w].
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,