Linear Regression and Correlation Problem One of the more challenging problems confronting the water pollution control field is presented by the tanning industry. Tannery wastes are chemically complex. They are characterized by high values of biochemical oxygen demand, volatile solids, and other pollution measures. A study conducted by Virginia Polytechnic Institute and State University measured the percent reduction in total solids (x) and percent reduction in chemical oxygen demand (y) of 33 samples of chemically treated waste. Table 11.1: Measures of Reduction in Solids and Oxygen Demand Solids Reduction, Oxygen Demand Reduction, y (%) z (%) 3 Solids Reduction, z (%) 36 Oxygen Demand Reduction, y (%) 34 7 11 37 36 11 21 38 38 15 16 39 37 18 16 39 36 27 28 39 45 29 27 40 39 30 25 41 41 30 35 42 40 31 30 42 44 31 40 43 37 32 32 44 44 33 34 45 46 33 32 46 46 34 34 47 49 36 37 50 51 36 38 a. Using a = 0.01, test H: ß1 = 0 vs. Hl: B1 6= 0 b. Imagine that the next solid reduction level is at 54%. what would be your best estimate of the oxygen demand reduction?
Linear Regression and Correlation Problem One of the more challenging problems confronting the water pollution control field is presented by the tanning industry. Tannery wastes are chemically complex. They are characterized by high values of biochemical oxygen demand, volatile solids, and other pollution measures. A study conducted by Virginia Polytechnic Institute and State University measured the percent reduction in total solids (x) and percent reduction in chemical oxygen demand (y) of 33 samples of chemically treated waste. Table 11.1: Measures of Reduction in Solids and Oxygen Demand Solids Reduction, Oxygen Demand Reduction, y (%) z (%) 3 Solids Reduction, z (%) 36 Oxygen Demand Reduction, y (%) 34 7 11 37 36 11 21 38 38 15 16 39 37 18 16 39 36 27 28 39 45 29 27 40 39 30 25 41 41 30 35 42 40 31 30 42 44 31 40 43 37 32 32 44 44 33 34 45 46 33 32 46 46 34 34 47 49 36 37 50 51 36 38 a. Using a = 0.01, test H: ß1 = 0 vs. Hl: B1 6= 0 b. Imagine that the next solid reduction level is at 54%. what would be your best estimate of the oxygen demand reduction?
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
Solve only a and b manually using formulas. Show complete solution.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Recommended textbooks for you
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman