Let X₁, X2, Xn represent a random sample from a Rayleigh distribution with the following pdf. f(x; 0) == -x²/(20) (a) Determine the maximum likelihood estimator of 0. Ox/n O (EX;) / 2n O (Ex₁²)/n Ox/2n Ο (ΣΧ. 2) / 2η Calculate the estimate from the following n = 10 observations on vibratory stress of a turbine blade under specified conditions. (Round your answer to three decimal places.) 12.38 9.01 11.00 5.04 6.31 7.56 8.68 8.25 16.38 11.86 X>0 (b) Determine the mle of the median of the vibratory stress distribution. [Hint: First express the median in terms of 0.] O 1.38630 (1.38636)³ O1.38630 (1.38636)² O O O 1.38638
Let X₁, X2, Xn represent a random sample from a Rayleigh distribution with the following pdf. f(x; 0) == -x²/(20) (a) Determine the maximum likelihood estimator of 0. Ox/n O (EX;) / 2n O (Ex₁²)/n Ox/2n Ο (ΣΧ. 2) / 2η Calculate the estimate from the following n = 10 observations on vibratory stress of a turbine blade under specified conditions. (Round your answer to three decimal places.) 12.38 9.01 11.00 5.04 6.31 7.56 8.68 8.25 16.38 11.86 X>0 (b) Determine the mle of the median of the vibratory stress distribution. [Hint: First express the median in terms of 0.] O 1.38630 (1.38636)³ O1.38630 (1.38636)² O O O 1.38638
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![### Educational Website Content
#### Topic: Maximum Likelihood Estimation and Vibratory Stress Distribution
---
**Problem Statement:**
Let \( X_1, X_2, \ldots, X_n \) represent a random sample from a Rayleigh distribution with the following probability density function (pdf):
\[ f(x; \theta) = \frac{x}{\theta} e^{-x^2/(2\theta)} \quad \text{ for } \quad x > 0 \]
**Tasks:**
---
**(a) Determine the maximum likelihood estimator of \( \theta \).**
Options:
- \(\circ \quad \bar{X} / n \)
- \(\circ \quad (\Sigma X_i^2) / 2n \)
- \(\circ \quad (\Sigma X_i^2) / n \)
- \(\circ \quad \bar{X} / 2n \)
- \(\circ \quad (\Sigma X_i^2) / 2n \)
**(b) Calculate the estimate from the following \( n = 10 \) observations on vibratory stress of a turbine blade under specified conditions. (Round your answer to three decimal places.)**
Observations:
- 12.38, 9.01, 11.00, 5.04, 6.31
- 7.56, 8.68, 8.25, 16.38, 11.86
(Enter the calculated estimate in the provided box.)
**(c) Determine the maximum likelihood estimate (MLE) of the median of the vibratory stress distribution.**
Hint: First, express the median in terms of \( \theta \).
Options:
- \(\circ \quad 1.3863 \hat{\theta} \)
- \(\circ \quad (1.3863 \hat{\theta})^3 \)
- \(\circ \quad 3 \sqrt{1.3863 \hat{\theta}} \)
- \(\circ \quad (1.3863 \hat{\theta})^2 \)
- \(\circ \quad 1.3863 \hat{\theta}^2 \)
---
This problem set guides you through the process of deriving the maximum likelihood estimator for the Rayleigh distribution parameter, applying the estimator to given data, and determining the MLE of the median of the distribution.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffb989860-4d1c-4fb5-9e6b-42a4528dce9c%2F71c75b1a-6041-400d-946f-af020ffd75db%2Fy1ozwm_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Educational Website Content
#### Topic: Maximum Likelihood Estimation and Vibratory Stress Distribution
---
**Problem Statement:**
Let \( X_1, X_2, \ldots, X_n \) represent a random sample from a Rayleigh distribution with the following probability density function (pdf):
\[ f(x; \theta) = \frac{x}{\theta} e^{-x^2/(2\theta)} \quad \text{ for } \quad x > 0 \]
**Tasks:**
---
**(a) Determine the maximum likelihood estimator of \( \theta \).**
Options:
- \(\circ \quad \bar{X} / n \)
- \(\circ \quad (\Sigma X_i^2) / 2n \)
- \(\circ \quad (\Sigma X_i^2) / n \)
- \(\circ \quad \bar{X} / 2n \)
- \(\circ \quad (\Sigma X_i^2) / 2n \)
**(b) Calculate the estimate from the following \( n = 10 \) observations on vibratory stress of a turbine blade under specified conditions. (Round your answer to three decimal places.)**
Observations:
- 12.38, 9.01, 11.00, 5.04, 6.31
- 7.56, 8.68, 8.25, 16.38, 11.86
(Enter the calculated estimate in the provided box.)
**(c) Determine the maximum likelihood estimate (MLE) of the median of the vibratory stress distribution.**
Hint: First, express the median in terms of \( \theta \).
Options:
- \(\circ \quad 1.3863 \hat{\theta} \)
- \(\circ \quad (1.3863 \hat{\theta})^3 \)
- \(\circ \quad 3 \sqrt{1.3863 \hat{\theta}} \)
- \(\circ \quad (1.3863 \hat{\theta})^2 \)
- \(\circ \quad 1.3863 \hat{\theta}^2 \)
---
This problem set guides you through the process of deriving the maximum likelihood estimator for the Rayleigh distribution parameter, applying the estimator to given data, and determining the MLE of the median of the distribution.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman