Let X = {a, b, c, d, e} and t = {X, Ø, {a} , {c, d} , {a, c, d} , {b, c, d, e}} be the topology on X and a subset A = {a, d, e} of X. Show that the relativization of t to A is TA = {A,Ø, {a} , {d},{a,d}, {d, e}}. %3D
Let X = {a, b, c, d, e} and t = {X, Ø, {a} , {c, d} , {a, c, d} , {b, c, d, e}} be the topology on X and a subset A = {a, d, e} of X. Show that the relativization of t to A is TA = {A,Ø, {a} , {d},{a,d}, {d, e}}. %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![{X, Ø, {a} , {c,d},{a, c, d} , {b, c, d, e}} be the topology on
) Let X = {a, b, c, d, e} and t =
X and a subset A = {a, d, e} of X.
Show that the relativization of T to A is TA = {A, Ø, {a},{d},{a, d} , {d, e}}.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbd15b5b6-3498-4922-ab89-438716d24ebe%2Fa875e0cb-5b2a-4dd0-bd4e-bdd7d6231bd2%2Fj4sg0x9_processed.jpeg&w=3840&q=75)
Transcribed Image Text:{X, Ø, {a} , {c,d},{a, c, d} , {b, c, d, e}} be the topology on
) Let X = {a, b, c, d, e} and t =
X and a subset A = {a, d, e} of X.
Show that the relativization of T to A is TA = {A, Ø, {a},{d},{a, d} , {d, e}}.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)