Let W = {ao + a,r + a2x2|a1, a1, a2 E R, ao + a1 = 0} be a subset of P2, the collection of all polynomials of degree < 2. Let p = ao + a1c + a2x2 E W. q= bo + b,x + b2x2 E W and scalar k. Which of the following shows that W is a subspace of P,? O A. 1 – a + a? e W. (ao + bo) + (a, + b1) %3D = 0 and kao + ka, = 0 O B. (ao + bo) + (a, + b1) = 0 and kao + ka1 = 0 O C. 1+a? e W. (ao + bo) + (a1 + b1 ) = 0 and kao + ka = 0 O D. 1- a + 7x2 e W. ao + a = 0, bo + b1 = 0 and kao + ka, 0 O E. 2 2x E W. (ao + bo) + (a1 + b) 0 and kao 0, ka, = 0 %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
{ao + a1r + a2x²|a1, a1, a2 E R, ao + a1 = 0} be a subset of P2, the collection of all polynomials of degree < 2. Let
bo + b1x + b2 x2 e W and scalar k. Which of the following shows that W is a subspace of P2?
Let W =
p = a0 + a1r + a2x2 e W. q =
O A. 1 – x +x² e W. (ao + bo) + (a1 + b1) = 0
%3D
O and kao + ka1 = 0
%3D
O B. (ao + bo) + (a1 + b1) = 0 and ka, + ka1
%3D
O C.1+ x? e W. (ao + bo) + (a1 + b1) = 0 and kao + ka, = 0
%3D
O D. 1- a + 7x2 e W, ao + a1
0, bo + b1 = 0 and ka, + ka1
0.
%3D
O E. 2 – 2x E W.(ao + bo) + (a1 + b1) = 0 and kao = 0, ka, = 0
||
%3D
wwww
Transcribed Image Text:{ao + a1r + a2x²|a1, a1, a2 E R, ao + a1 = 0} be a subset of P2, the collection of all polynomials of degree < 2. Let bo + b1x + b2 x2 e W and scalar k. Which of the following shows that W is a subspace of P2? Let W = p = a0 + a1r + a2x2 e W. q = O A. 1 – x +x² e W. (ao + bo) + (a1 + b1) = 0 %3D O and kao + ka1 = 0 %3D O B. (ao + bo) + (a1 + b1) = 0 and ka, + ka1 %3D O C.1+ x? e W. (ao + bo) + (a1 + b1) = 0 and kao + ka, = 0 %3D O D. 1- a + 7x2 e W, ao + a1 0, bo + b1 = 0 and ka, + ka1 0. %3D O E. 2 – 2x E W.(ao + bo) + (a1 + b1) = 0 and kao = 0, ka, = 0 || %3D wwww
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,