Let V₁, V₂ be vectors in R³ given by ---- V1 a) Find a vector w R³ with the following properties: • w / 0 • For any linear transformation T: R³ R³ which satisfies T(v₁) = T (V₂) we must have T(w) = 0. Enter the vector w in the form [C₁, C₂, C3]: d₁ b) Find a vector z = d₂ with the following properties: d3 Enter the vector z in the form [d₁, d₂, d3]: V2 • d₁ = 0 • For any linear transformation T: R³ R³ which satisfies T (V₁) = T(v₂) we must have T(z) = T(v₁) = T (v₂). Hint. Use part a).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \(\mathbf{v_1}, \mathbf{v_2}\) be vectors in \(\mathbb{R}^3\) given by

\[
\mathbf{v_1} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix}
\]

**a) Find a vector** \(\mathbf{w} \in \mathbb{R}^3\) **with the following properties:**

- \(\mathbf{w} \neq \mathbf{0}\)
- For any linear transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3\) which satisfies \(T(\mathbf{v_1}) = T(\mathbf{v_2})\) we must have \(T(\mathbf{w}) = \mathbf{0}\).

Enter the vector \(\mathbf{w}\) in the form \([c_1, c_2, c_3]\):

\[
\begin{array}{c}
\boxed{}
\end{array}
\]

**b) Find a vector** \(\mathbf{z} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}\) **with the following properties:**

- \(d_1 = 0\)
- For any linear transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3\) which satisfies \(T(\mathbf{v_1}) = T(\mathbf{v_2})\) we must have \(T(\mathbf{z}) = T(\mathbf{v_1}) = T(\mathbf{v_2})\).

*Hint. Use part a).*

Enter the vector \(\mathbf{z}\) in the form \([d_1, d_2, d_3]\):

\[
\begin{array}{c}
\boxed{}
\end{array}
\]
Transcribed Image Text:Let \(\mathbf{v_1}, \mathbf{v_2}\) be vectors in \(\mathbb{R}^3\) given by \[ \mathbf{v_1} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{v_2} = \begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} \] **a) Find a vector** \(\mathbf{w} \in \mathbb{R}^3\) **with the following properties:** - \(\mathbf{w} \neq \mathbf{0}\) - For any linear transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3\) which satisfies \(T(\mathbf{v_1}) = T(\mathbf{v_2})\) we must have \(T(\mathbf{w}) = \mathbf{0}\). Enter the vector \(\mathbf{w}\) in the form \([c_1, c_2, c_3]\): \[ \begin{array}{c} \boxed{} \end{array} \] **b) Find a vector** \(\mathbf{z} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}\) **with the following properties:** - \(d_1 = 0\) - For any linear transformation \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3\) which satisfies \(T(\mathbf{v_1}) = T(\mathbf{v_2})\) we must have \(T(\mathbf{z}) = T(\mathbf{v_1}) = T(\mathbf{v_2})\). *Hint. Use part a).* Enter the vector \(\mathbf{z}\) in the form \([d_1, d_2, d_3]\): \[ \begin{array}{c} \boxed{} \end{array} \]
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,